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EXECU'ITv_ SL_z[M_d_Y

This report provides the results of communication analysis for the baseline and enhanced

performance spacecraft designs* proposed for Expendable Explorer Spacecraft (EES)

series of missions, to be launched in 1998 through 2005. Five classes of orbits

(Geosynchronous, Circular-28 degree inclination, Polar-90 degree inclination,

Sunsynchronous-97 degree inclination, Molniya orbit) and a set of candidate instrument

payloads provided by the EES Study Manager were used to formulate the basis for the EES

Communication Study.

This study was performed to assess the feasibility of using Space Network or ground

stations for supporting the communications, tracking and data handling of the candidate

instruments that are proposed to be launched into the desired orbit.

All orbits except the geosynchronous and Moiniya orbits are capable of being supported by

current TDRSS capabilities. Either Wallops or GSFC NTTF could be used as the ground

station for these two exceptions. The ATDRSS system with a look angle of 77.5 degrees

either side of nadir point line can easily support all five classes of orbits. It should be in

place m the beginning of the EES period.

For the low Earth orbit mission (Circular-28 degree inclination, Stmsynchronous-97 degree

inclination, Polar-90 degree inclination), the enhanced design spacecraft could support via

TDRSS all but three of the low Earth orbit strawman instruments. One of the three could

be supported as well if a longer contact period via TDRSS were to be used.

For the low Earth orbit mission (Circular-28 degree inclination, Sunsynchronous-97 degree

inclination, Polar-90 degr_ inclination), the baseline spacecraft design could support six of

the 22 low _ orbit strawman insu'uments via Wallops with only minor modifications to

the Wallops equipment. Nine more of the low Earth orbit strawmaa instruments could be

supported but would require upgrades to the Wallops communications and data handling

equipment. Seven of the swawman instruments cannot be handled without upgrades to

Wallops' RF equipment which could be cost prohibitive. Five of these seven that cannot

be supported via Wallops could be supported via TDRSS using an enhanced design.
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For the high Earthorbit mission(Geosynchronous,Mohaiya),thereweretwo out of three

strawmaninstrumentsthatcanbesupportedby theEESdesignsvia ATDRSS. Onevery

high datarate instrumentwouldrequireK-Band supportwhich is beyondtheEESdesign.
Two out of threestrawmaninstrumentscanbesupportedby theEESdesignsvia Wallops.

Again,thevery high datarate instrumentwould requireK-Band supportwhich is beyond

theEESdesign.

In the considerationof using ground stationsfor supporting the candidateinstrument

payloadsin low inclinationor polarorbits, thecapabilitiesof thenon-NASAfacilities, the
transportablegroundstation,anda dedicatedequatorialgroundstationwasexaminedto

determinehow to effectivelysupporttheEESmission. Severalof theseapproachesappear

viable and capableof supportinga wide rangeof potential EES instrument payloads.

However, the implementationdetails and costsof theseapproachesshouldbe studied
further.

* The baselinespacecraft design provides an average data rate of 10 kbps, and uses a

TDRSS-compatible transponder and omnidirectional antenna. The enhanced spacecraft

design provides an average data rate of 100 kbps, and uses a TDRSS-compatible

transponderand a high gainantenna.
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1.0 INTRODUCTION

1.1 PURPOSEOF STUDY

TheNational AeronauticsandSpaceAdministration(NASA) intendsto launcha

seriesof ExpendableExplorerSpacecraft(EES)during the 2000's. Thesemissionswill

have a rangeof orbits from near-Earth,to highly elliptical, to geosynchronous.Their

purposeis to supportexperimentscoveringthedisciplinesof aeronomy,ultra-violet and

visible astronomyandrelativity, highenergyastrophysics,infra-redandradio astronomy,

magnetosphericphysics,andsolarphysics.

The EESis a massproducedspacecraftbus thatcanhouseavariety of scientific

experimentsoperatingin a wide rangeof missionorbits. The desired duranon of these

experiments ranges from 12 tO 36 months. EES spacecraft are expected to be launched

approximately every 18 months over a six-year period beginning in 1999. The launch rate

and desired duration implies that as many as three spacecraft may require support at one

time; this number may increase if an EES remains active beyond its planned lifetime.

Simultaneous support of three or more spacecraft may be required ff they are being

supported by the same ground station.

It is proposed to use the Delta rocket to launch these payloads. The Delta launcher

will deliver payloads from 250 kg to 4000 kg to orbits ranging from near-Earth to

geosynchronous, from near the equator to high inclination. The largest Delta shroud

allows a payload volume up to 32.3 cubic meters. The variety of orbits and payload

constraints allows some flexibility in the communications choice for each mission.

CTA, Incorporated was given a task to quantitatively analyze communication

alternatives for selected orbits and candidate experiments. The benefits and costs of using

either the Space Network or Ground Stations for EES commumcation are evaluated in the

report. Both the spacecraft design and the mission support operations arc considered. Key

technical issues are addressed, and the most suitable approaches to EES communications

are identified.
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l. 2 STUDY APPROACH

The approach taken was first to review the study environment and drivers. It

included an examination of capabilities and constraints of existing and future Space

Network (SN) and Ground Stations, review of launch vehicle performance, and analysis of

proposed orbits and contact times as well as the selection of candidate instrument payloads.

Sensitivity analysis indicated that orbit geometry and data rates would drive the

study results. Inputs from the EES Study Manager were used to select a class of orbits and

responses to the Explorer Concept Study Program Notice [Ref. 1] were used to identify the

strawman experiments and derive expected data rates.

The study then focused on the link margins and contact times using link

calculations, SN capabilities including Advanced Tracking Data Relay Satellite System

(ATDRSS), Ground Station capabilities, possible orbits, and possible data rates.

Analysis was then performed to decide whether the Tracking Data Relay Satellite

System (TDRSS) or ground stations should be used. This analysis utilized the link

margins, baseline and enhanced EES design options [Ref. 2], and the data rate

requirements of the strawman experiments.

1.3 ORGANIZATION OF REPORT

Section 2 of this report contains background data on the capabilities of the existing

SN and ground stations. It also describes future TDRSS and ATDRSS capabilities and

discusses their possible impact on EES communications. Readers who are familiar with

this information should skip to section 3.

Section 3 discusses the drivers and requirements embodied in launch vehicle

performance, orbits, contact times, and strawman instrument considerations.

Section 4 evaluates the link margins when using the SN to support the EES.

Section 5 evaluates the link margins when using ground stations to support the

EES.
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Section6 considersgroundstationandcommunicationalternativesincludingnon-

NASA andforeignresources,transportablegroundstations,anddirecttransmissionof data

to scientificinvestigators.

Section7 presentsoverallconclusionsandrecommendations.

AppendixA presentstheview timesof several strawman instruments with various

ground stations and TDRSS. These view times were extracted from computer printouts,

provided by Code 554.0 in support of this study, and listed in tabular form for each of the

selected strawman instruments. The average view time for Wallops was used to determine

contact times that can be expected for spacecraft with similar orbits.

Appendix B is the SEAS TEAM QUICK NOTE provided by Code 554.0 that

contains the maximum slant ranges to various strawman instruments from several ground

stations and TDRSS. It also provides the equations used to determine those maximum

slant ranges which were used for the figures in the conclusions.

Appendix C explains the link calculation used in section 5.

Appendix D explains how the data rate requirements used in the figures in the

conclusions were derived.
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2.0 BACKGROUND ON THE SPACE NETWORK AND NASA GROUND

STATIONS

This section contains background data on the capabilities and limitations of the

NASA communications resources, including TDRSS/ATDRSS and NASA ground

stations. Note: readers that are knowledgeable on this subject should go on to section 3.

2.1 SPACE NETWORK CAPABILITIES

This section describes current and projected capabilities of the SN that are relevant

to the support of EES. These capabilities are discussed in terms of two applicable SN

systems, the S-Band Multiple Access (MA) system and the S-Band Single Access (SSA)

system. The K-Band single access (KSA) service was judged not relevant to the EES

concept because of expense; its capabilities are mentioned in this section but its application

to EES will not be studied in the other sections. Table 2.1-I summarizes the SN

capabilities.

Signals originating on the ground and flowing through a Tracking and Data Relay

Satellite (TDRS) en route to a user spacecraft are said to use the forward link, while signals

originating in a user spacecraft and flowing through a TDRS en route to the ground are said

to use the return link,

With a single TDRS in operation, communication with a user is feasible for

approximately half of each user spacecraft orbit. Currently two TDRSs are operational.

Each TDRS is placed in a g¢osynchronous orbit, with one axis pointed to the center of the

earth. The TDRS points its antennas at the spacecraft it supports; using mechanical

pointing in the case of the SSA antennas, or electrical pointing in the case of the S-Band

MA antenna array. In either event, the antennas are not pointed more than approximately

20 ° away from the line connecting the TDRS to the center of the earth. The geometry of

this limitation requires that a spacecraft in a circular orbit can not have an altitude greater

than 12,000 km above the surface of the earth. For spacecraft in low Earth orbit (LEO),

nearly continuous communication is expected to be feasible except in the zone of exclusion
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(ZOE). Tla¢ ZOE i._a region over the Indian Ocean where spacecraft with orbits at altitudes

lower than 1200 km are not visible to either TDRS. Spacecraft with orbits higher than

12,000 km _ visible to a TDRS only a small part of the time because the spacecraft is

outside of that TDRS's viewing angle for a large part of the orbit. Figure 2. I- 1 shows the

middle coverage zone geometry of TDRSS for user spacecraft at altitudes between 1200 km

and 12,000 km. This figure also shows a no-coverage zone which is the ZOE for

spacecraft with altitudes less than 1200 km. A TDRS can support spacecraft with orbits

greater than 12,000 km but only when it passes through the specific coverage zone

geometry for that TDRS. Figure 2. I-2 shows this TDRS upper coverage zone geometry.

Figures 2. I- I and 2. i-2 were taken from the SN Users Guide [Ref. 3].

NASA plans to have four TDRSs in orbit by 1995 and will phase out TDRSS with

ATDRSS in the EES time frame, this is discussed in Section 2.1.3.
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Table 2.I- I. SpaceNetworkCapabilities

SimultaneousUsers 1perTDRS 2 per TDRS
EIRP 34 dBW 43.6 dBW

Frequency 2106.4 MHz 2025-2120 MHz
Polarization LCP LCP or RCP

Maximum Data Rate 10 kbps 300 kbps

Range Error 50 nsec 50 nsec
RETURN LINK

Simultaneous Users 20 * 2 per TDRS
G/T -1.9 dB/degK 9.2 dB/degK
Frequency 2287.5 MHz 2200-2300 MHz
Polarization LCP LCP or RCP
Data Channels 2 2

Data Rate 0.1-50 kbps 6 Mbps

Notes:
TDRS =
EIRP =

dBW =

MHz =

LCP =

RCP =

rise.A: --

G/T =

d.B/degK =

Tracking and Data Relay Satellite
Effective Isotropic Radiated Power
decibels relative to 1 Watt

megahertz
left hand circular polarization,
right hand circular polarization
nanosecond (10 .9 sec)

receiver gain per system noise temperature
decibels relative to (I degree Kelvin) -1

* Maximum simultaneous links is a function of the TDRSS ground
terminal equipment.
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2.1.1 Present Multiple Access (MA) System

The MA system provides bi-directional S-Band communications channels between

ground facilities and multiple user spacecraft. These channels are normally used to send

telemetry, command, and tracking signals.

The MA space segment on each TDRS uses a phased array of antennas to provide a

single forward link data channel and up to 20 return link data channels. MA services are

time-shared among users to provide essential services to as many users as possible.

The MA system permits command rates of up to 10 kilobits per second (kbps),

telemetry rates of up to 50 kbps, and measurement of user range and range rate. The

forward link operates at 2106 megahertz (MHz) and uses spread spectrum techniques to

limit the spectral power density impinging on the ground. The return link operates at 2288

MHz and uses code division multiple access techniques to separate the signals of multiple

users.

Users of the MA system must employ a transponder that meets NASA

specifications. Such transponders are readily available from several vendors.

2.1.2 Present Single Access (SA) System

The SA system provides bi-directional S-Band and K-Band communication

channels between ground facilities and up to two user spacecraft per TDRS. These

channels are normally used to transmit high rate sensor data along with telemetry,

command, and tracking signals.

Each TDRS hasdual 15-foot (4.6-meter) SA antennas that can be independently

pointed at sepLntte user spacecraft. Each antenna can provide bi-dir_tional communication

with a single user with two data channels in each direction. SA services are time-shared

among multiple users to proviclc communications for as many users as possible.

The SSA system permits command rates of up to 300 kbps, telemetry rates up to 6

Mbps, and measurement of user range and range rate. While the MA system uses fixed

operating frequencies, the SSA system is turnable over a band of fa'eXluencies, 2025 to

2120 MHz for the forward link and 2200 to 2300 MHz for the return link.
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The K-Band Single Access (KSA) system permits nominal command rates of up to

25 Mbps, telemetry rates up to 300 Mbps, and measurement of user range and range rate.

The KSA forward link operates at 13 GHz and the return link operates at 15 GH.z.

SA users face fewer compatibility requirements than MA users and have greater

freedom in choosing frequencies and transmitter power levels. The SA service is therefore

in demand, and must be allocated to competing missions on a priority basis. The EES

missions are unlikely to receive a high priority in this evaluation and will probably find

access to the SA service very restricted unless future TDRSS capabilities relax these

constraints.

2.1.3 Future TDRSS Capabilities and the ATDRSS Era

In 1995, a second TDRS will be added to both the East and West satellite locations

to begin the "Cluster" operation that will double the support capabilities. These TDRS will

offer S-Band MA, SSA, and KSA services. Currently, a Second TDRSS Ground

Terminal (STGT) is being built to support the Cluster operations.

The ATDRSS era will be from 1997 to 2012. Replacement of the TDRS with

ATDRS is expected to occur over a seven year period, from 1997 to 2003 [Ref. 4].

ATDRS will provide enhanced capabilities including support for Ka-Band, data rates to

650 Mbps, and orbits to gcosynchrunous. Table 2.1-2 shows a baseline service

comparison of TDRSS and ATIDRSS [Ref. 5]. Each ATIDRS will have an expanded field

of view (FOV) for the SSA services. The FOV for each SSA antenna is :_.22.5 ° east/west

and +31 o north/south of the nadir point line. If the +77.5 ° east/west FOV is realized then a

minimum slant range to a satellite in geosynchronous orbit is approximately 15,500 kin.

Figure 2.1-3 shows the _ewing capability of ATDRSS using a look angle of 70 ° either side

of the nadir point line. The ±70 ° FOV is a conservative approach but demonstrates that

ATDRSS can easily cover spacecraft out to gcosynchronous. Using a ±70 ° FOV, the

minimum slant range to a geosynchronous satellite is about 28,900 ian. EES

communications will need to meet TDRSS limitations in the earlier part of the mission but

should be able to rely on ATDRSS capabilities during the later part of the mission

frame.
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ATDRS
41"W

Longitude

87.8"W

%

ATDRS
171"W

Longitude

NO ATDRSSCOVERAGE

Figure 2.1-3. ATDRS Field of View (SSA)
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2.2 NASA GROUND STATION CAPABILITIES

Table 2.2-I identifies NASA and National Oceanic and Atmospheric Administration

(NOAA) ground stations that may be available in the EES series time frame. The location

of these stations are mapped m Figure 2.2-I.

Table 2.2-1. Locations of Available NASA Ground Stations

Statiori
Bermuda, UK
Canberra, Australia
Fairbanks, Alaska
Goldstone, California
Madrid, Spain
Merritt Island, Florida

Wallops Island, Virginia

Location

650 W, 32 ° N
149 ° E, 36 ° S
212°E,65°N
117 ° W, 35 o N
40 W, 40 ° N
80 ° W, 28 ° N
750 W, 38 o N

Functions

tracking,KSC launch
DSN

NOAA data reception
DSN
DSN

tracking,KSC launch & landing
tracking, launch

Note: DSN =
KSC =
NOAA =

Deep Space Network
Kennedy Space Center
National Oceanic and Atmospheric Administration.

Communication between a ground station and a spacecraft in Earth orbit is only

possible while the spacecraft is above the ground station horizon. Usable view periods

range from approximately 5 minutes to 24 hours, depending on the spacecraft orbit.

When the baseband signal spectra are compatible, the uplink supports simultaneous

command and ranging transmissions, and the downlink supports simultaneous telemetry

and ranging reception. The available uplink and downlink frequency ranges are 2025 to

2120 MHz and 2200 to 2300 MHz, respectively.

NASA ground stations are equipped to modulate commands on a 16 kilohertz (kHz)

subcarrier, thus limiting the command data rate to a maximum of approximately 8 kbps; 2

kbps is the norm. Downlink demodulation is supported to a maximum bandwidth of 10

MI-Iz, corresponding to a maximum downlink bit rate of approximately 5 Mbps. Each

ground station is capable of range and range rate measurements although current user

transponders are not compatible with ground range and range rate signals. Orbit
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computation ig performedin a central location at GSFC, with results fed back to the

tracking stations to support continuing operations and to the science community to support

data interpretation. If frequent tracking measurements are made, the position uncertainty of

the computed orbit is typically less than 100 meters [Ref. 6].

The ground station interface with user spacecraft employs a continuous stream of

serial data, while the ground station interface with NASA Data Capture Facilities uses a

discontinuous stream of data blocks. Conversion and buffering for the latter interface are

accomplished in data formatting equipment. The rate capability of this equipment

potentially limits the rate of off-site data transmission. Whether this will be a problem for

EES will depend on the required downlink data rate and whether there is a need to relay the

data at full rate.

In general, each of the available NASA ground stations is capable of satisfying EES

requirements as they are presently understood, providing that the EES communications

system is designed and implemented to be compatible with NASA ground station

interfaces. The NASA ground stations will be upgraded to be able to handle Consultative

Committee for Space Data Systems (CCSDS) compatible EES communications, command

and data processing.

2.2.1 Launch and Landing Ground Stations

NASA has tracking stations located at Merritt Island, Florida and Bermuda, United

Kingdom. Each station uses a 9 meter antenna for S-Band support of launch and landing

operations. These stations are also permitted to support orbiting spacecraft during

spacecraft emergencies.

2.2.2 Wallops IslandOrbitalTracking Station(WPS)

WPS has a charter to support Earth-orbiting spacecraft when TDRSS support is

inappropriate. WPS currently supports the Interplanetary Monitoring Platform-8 (IMP-8),

International Ultraviolet Explorer (IUE), Cosmic Background Explorer (COBE), and

Nimbus-7. These spacecraft require a variety of communication alternatives: IMP-8 uses

Very High Frequency (VHF) communication, IUE uses hybrid VHF/S -B and, and
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Nimbus-7 uscsS-Band. Except for COBE, these spacecraft were designed and built prior

to the establishment of the SN.

The station presently operates around the clock, seven days per week. Adequate

control room electronics and staffing are in place to support dual S-Band operations and

one hybrid VHF/S-Band operation, i.e. the IUE. Solar cell and battery deterioration on

IUE indicate it is unlikely to survive Earth shadow beyond 1994. The VHF support

capability will probably be dropped with/UE. Therefore, Wallops post-IUE capabilities

may be reduced to a single S-Band mission.

The Wallops Island 9-meter S-Band antenna would be the logical choice for EES

operations since it has ample gain and can provide both uplink and down/ink. Wallops

Island uses additional S-Band antennas to support range operations. Under the terms of

present agreements, these antennas cannot be committed support of Earth orbiting

spacecraft, but can be used in contingency situations.

Wallops Island uses a unique data formatter which has been tested to 1 Mbps and

which may be operable at somewhat higher rates. The analog tape recorder inventory

includes four machines with a 2 MHz bandwidth, and one machine with a 4 MHz

bandwidth. The data communications interface includes numerous terrestrial circuits, a

Radio Corporation of America (RCA) satellite service, a 224 kbps Time Division multiplex

Access (TDMA) interface, and a variable rate TDMA interface with a maximum capability

of 1.54.0, Mbps.

Wallops Island is capable of supporting a single EES in non-equatorial orbit with

minimal system enhancements and no staffing increase. However, both system

enhancements and stafirmg increases may well be required if two or more EES required

simultaneous support at Wallops Island.
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2.2.3 Deep Space Network (DSN) 26-Meter Subnet

The DSN operates a subnet using 26-meter diameter antennas at three stations near

Goldstone, California; Canberra, Australia; and Madrid, Spain. The Goldstone station also

has a 9-meter antenna. This subnet is available to support Earth-orbiting spacecraft. The

network operates around the clock supporting a set of ground-compatible spacecraft that

includes Landsat, Nimbus, and Dynamics Explorer. The stations are located in mid

latitudes and are capable of providing support for spacecraft launched from Merritt Island,

Wallops Island, and Vandenburg Air Force Base, but not from San Marco. These

locations are depicted in Figure 2.2-1.

The size and sophistication of the DSN antennas provide ample link margins for

EES support. Data formatters currently in use are proven at 224 kbps and may be capable

of higher rates with suitable programming. Data communication lines are limited to 224

kbps at Goldston¢ and 56 kbps at Canberra and Madrid. These stations are dedicated to the

support of deep space missions. Currently, Galileo and Magellan are the deep space

missions being supported by the DSN. An EES mission would have to be coordinated

with any deep space missions of a specific time _ame to get DSN support.

In addition to specific capabilities for supporting deep space probes, each DSN

station is equipped with Launch and Landing Ground Station-unique hardware. The 26-

meter subnet is capable of supporting EES in non-equatorial orbits with minor Limitations.

Science data downlink may have to be recorded at the station and played back later at

reduced rates consistent with the available communication line bandwidth.
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3.0 DRIVERSAND REQUIREMENTS

Section 3 briefly discussesDelta launcher performance in section 3.1, the

requirementsof thestrawmaninstrumentpayloadsin section3.2,andorbit driven contact

timeconstraintsin section3.3. Theserequirementsarethenusedasthebasisfor analysis

of designtradeoffs("considerations")for thecommunicationssubsystem,datahandling
subsystem,andspacecraftoperationsdiscussedin Sections4 and5.

3.1 LAUNCH VEHICLE PERFORMANCE

The EES will be launched on a Delta 7920 or 7925 rocket. Figure 3.1-1 and Figure

3. i-2 are taken from the Delta users manual [Ref. 7] and show the apogees that various

payload weights can be lifted to using a two stage or three stage Delta, respectively.

The Delta is capable of inserting payloads into low Earth, sun synchronous, high

eccentricity, and geosynchronous orbits. The lift capabilities of the Delta and the

subsequent constraints put on the payload weight and volume are discussed in an

independent study performed by the EES Study Team. The drivers for this study on

communications analysisare slantrangesgeneratedby therange of possibleorbitsthatcan

be achieved,and contacttimes thatareobserved foreach orbit.From thesethetransmitter

and antenna requirementsare derived.
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3.2 STRAWMAN INSTRUMENT CONSIDERATIONS

A list of strawman instruments was developed by reviewing responses to a "Dear

Colleague" letter issued by NASA Headquarters. Responses came in the form of forty-five

Explorer mission proposals [Ref. 1] which were sorted into six disciplines. The discipline

groups are: Upper Atmosphere & Ionosphere (AERO); Ultra-Violet and Visible

Astronomy and Relativity (EUVU); High Energy Astrophysics (Hi-E); Irdra-Red and

Radio Astronomy (IRSU); Magnetospheric Physics (MAGN); and Solar Physics (SOLR).

Twenty-five proposals were picked as a test group for this study. The proposals used

represent each discipline and include a wide range of parameters for power usage, orbit,

data rate, dimensions, mass, pointing accuracy required, and mission length. Although

these twenty-five experiments are a preliminary selection, they may be assumed typical of

their fields of study, and were used to develop the EES mission model for the

communication study. These strawman experiments were selected for this study strictly for

the purpose of sizing data communications and processing requirements. Table 3.2-1

shows how many proposals were picked from each discipline and how many times each

discipline is represented.

Table 3.2-1.Science Disciplines Represented by the Strawman

DISCIPLINE NO. PROPOSALS NUMBER USED NO. DISCIPLINES
EACH DISCIPLINE FOR TEST REPRESENTED

AERO 11 6 8
EUVU 13 5 5

Hi-E 12 6 7
IRSU 6 3 3

MAGN 8 2 5
SOLR 6 3 4

TOTAL 56 25 32
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Table 3.2-2. Strawman Experiments for Expendable Explorer Spacecraft

EXPERIMENT .MASS
_0

POWER ORBIT DATA RATE (kl_s)
tWma)

PERIG APOG INCL DUTY
PEAK AVG (kin) 0m_) {dell.) PEAK AVG CYC

% ON

AEROS 425 100

ALM 120

ARTBE 800

A_eroseumaol-
ogy Explorer 700

Astro/Atmo¢
Spect. Expl. 3100

EMAO 1000 4O0

EXCAM 850 I I0

HEASI 240O

HECRE 2.500 375

[-DQ_ 45O 75

HXSIE 3266 416

LMAGE 200

LUX 20_

LYMAN 1030

MELTER 115

Micr_hyucJ
Explorer 400 2(30

Multipmbe 300
Expl. Misn.

NAE 1200 500

1200

QUASAT 11300

SAMEX 4OO 95

SHAPE 1565 500

SOI_ 300 IJO

SpEx 201}0 800

SYNOP 10_0

50 600 2000 90 131 16 12

200 300 12000 90 14 100

200 1000 13000 90 800 20

200 500 500 57 36 10_

6(30 500 500 97.5 300 300 1130

30O 150 4000 9O 200 20 25

110 500 500 28 500 30

1500 600 600 28 1000 150 15

375 500 500 28 102 100 10

75 600 600 28 20 20 100

416 700 700 28 48 48

210 19200 64000 90 90 11

500 500 500 28.5 120

250 500 500

32O 660 6_ 98

100 350 1500 57

100 500 15000 9O

500 4_ 4_ 28

50 700 700 28.5

28.5 480OO 24

12

8(]0

50

15 15

4 4

100

I00*

100"

60

tO

50

100

10(X) 189(X} 33172 63 128000 128000 100

95 2150 2150 106 53 53 100

500 500 500 28.5 2300 80 15

150 500 500 28.5 25 60

gO . 500 500 28.5 64 64 1(30"

225 36000 36000 0 0.04 IfXF

• I00% dmy cyr.leaummed

APOG = Aposee CYC = Cycle
AVG = Average INCL = IndJ_natioa
CTRL = Control g.NLG = Knowledle

t._Cm = t.=t_
_N = Miuica
PERIG = Pewee

POINTING
ACCURACY MISN

STABILIZATION (At_ec) LNTH

CTRL KNLG MO.

3 tins 36430 360 24

Spin 3600 360 24

Spm 700 1080 24

3-txis 350 12

3 axis 3 12

600 6OO 24

3-axis 600 24

3 txt, 32 2 36

Not Sfmcified 10800 12

3-axis 7200 3411 36

3 txts 300 10 36

Spin 1800 360 12

3axis 1 36

3 tx_ 0.10 36

3-m 80 70 24

,Not $t_£f'ted 360 360 24

Spin 1800 360 12

3-axis 60 60 24

3-Lv..m 600 24

3 _ 60 24

3 _ 5 1 36

3 _ 120 0.20 36

Not _ I0 5 12

3axis 3 3 12

3axis 3600 60
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Nine of the proposals contained multidiscipline experiments, this is the reason the

total number of proposals in each discipLine is greater than the actual number of proposals.

Seven of the multidiscipline experiments were used for this study. Table 3.2-2 lists the

experiments and shows their proposed instruments masses, power requirements, orbit

parameters, data rates, stabilization required, and pointing accuracy requirements.

Stabilization was included because antenna requirements for a spin stabilized

spacecraft are different than for a three axis gyro stabilized spacecraft. Power and mass

considerations are being addressed in another study but were included in Table 3.2-2 for

information.

The data rate and duty cycle are used to indicate what the transmission rate will be

during contact time. The orbit parameters are used for calculating contact times and

maximum slant range, Not all the orbits fit into a specific orbit class but for the study

purpose they were put in a class as shown in Table 3.2-3. These orbit classes will be

discussed in section 3.3.

Since most of these instruments prescribe orbits which are very different from the

five classes of orbits to be discussed (but still within capabilities of the Delta launch

vehicle), they were analyzed separately from the five classes of orbits.

The EES Study Team expressed preference for supporting these instruments

entirely from one or more ground stations, fearing that use of the TDRSS would impose

complex and costly requirements for high power transmitters and steerable spacecraft

antennas. The RF propagation path to a ground station is much shorter than the path to a

TDRS. The obvious conclusion is that a less costly RF system, including a lower gain

spacecraft antenna, would be required for transmission directly to ground, avoiding the

long path to TDRS. Notwithstanding this, support via TDRSS is considered as part of this

analysis and compared with support of the same spacecraft via one or more ground

stations.

As an aid in this analysis, the strawman instruments have been grouped according

to the criterion of whether the instrument orbit exceeded the allowable TDRS viewing

angle. This grouping is shown in Table 3.2-4. The allowable "r'DRS viewing angle is

explained in Section 2.1 and Section 2.1.3 for ATDRSS.
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Table 3.2-3. Orbit ClassAssigned

ORBIT CLASS

Geosynchronous

Low EarthOrbit, 28degreeinclination

3 PolarOrbit

4 Sun-SynchronousOrbit

5 Molmya

Actual inclinationis 57degrees.

SYNOP

EXPERIMENT

EXCAM

HEASI

FIECRE

FIX

I-IXSIE
LUX

Lyman
NAE

NIREX

SHAPE

SOFE

SpEx
AFROS
AIM

ARTBE

AstemseismologyExplorer*
EMAO

Microphysics Explorer*

Multipmbe Explorer Mission

Astro./Atmos. Spect. Expl.

MELTER

SAMEX

IMAGE

qUASAT
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Table 3.2-4.. StrawmanInstrumentsfor EESThatCanBe SupportedBy TDRSS

Instrument

LMAGE

QUASAT
SYNOP

Astro/Awnos

AEROS

ARTBE

Perigee ApogeeMass (kg)

200

1,000

1050

3,100

425

I in

Incl(°) Data Rate (kbps)
(k.m) (krn)

Max Av_

90

128,000

0 0.04

Instruments wi_ limitedTDRSS covera[e

19,200 64,000 90

18,900 29,560 63

36,000 36,000

Instrumenmwith near-continuous

500

600

500

2,000

12,000

13,000

TDRSS coverage

97.5

90

300

131
i

14

800

11

128,000

0.04

3OO

15

14

20

120

800

300

1,000

90

90

57Asteroseismo 700 500 500 36 36

EIVLAO 1,000 150 4,000 90 200 20

28

28.5

28.5

500

600

EXCAM 500

1,000

102

20

HEASI

850 500

2,400 6OO

50O

30

150

1002,500HECRE 500

HXRE 450 600 600 28 20
i

HXSIE 3,266 700 700 28 48 48

LUX 2,000 500 500 28.5 120 120

LTman 1,030 500 500 28.5 48,000 24

MELTER 115 660 660 98 12 12

Microphysics :

Multiprobe

NAE

NIREX

4O0

300

1,200

1,200

1,500 57

9015,000

450

800

50

15

4

53

2,300

25

6,1

700

35O
|

500

450 28

28.5700

SAMEX 400 2,150 2,150 106

SHAPE 1565 500 500

500

500
I

500

500

300

8OO

50

15

4

53

80

25

642,000

SOFE

SpZx

28.5

28.5

28.5
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In theory,a spacecraft in a highly elliptical orbit could be supported by TDRSS during

those times when it was with.in the allowable viewing angle. Contact times for six of the

orbits (AEROS, AIM, ARTBE, EMAO, Microphysics Explorer, and Multiprobe Explorer

Mission) that feLl within TDRSS coverage zone were analyzed over a two day period. It

was found that orbits that went outside the TDRSS coverage zone by only a few thousand

kilometers could be handled by TDRSS. Tables 3.2-5 and 3.2-6 show the times during

which the Multiprobe Explorer Mission would be visible to one of the TDRS or to a ground

station [Ref. 8]. Apogee occurs over the Indian ocean in one table and perigee occurs over

the Indian ocean in the other table. These configurations we're chosen since they would

produce the longest periods of non-Contact with a TDRS. The longest period of loss of

sight by both TDRS was 20 minutes and occurred twice in two days. It appears the

TDRSS can be used for highly elliptical orbits that extend as far as 3000 km beyond the

12000 km outer limit. Note that when ATDRSS is in full operation all orbits of the

strawman instruments could be supported, in theory, as is explained in Section 2.1.3 and

shown in Figure 2.1-3.
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Table 3.2-5. Contact Tin_ for Mul&[m'obe (Apogee ov¢= Indian Ocean)

Multiprobe
Apogee over the Indian Ocean

Satellite view time (in minutes) at the given stations.

Event # Wallops Goldstone Alaska Canberra Madrid
TDRS1 TDRS2 WPSA DS 16 ULAE DS 46 DS 66

1
2
3
4
5

6
7

8
9

10
11

i

Mean

Median

630.0O
388.00
254.00
629.00

371.00
257.00

421.50J
379.5o!

265.50 155 10
252.00; 50163

646.00! 15.57
423.00! 136.43
252.00 161.90

629.00i 18.08
59.47i

411.25
344.25;

85.31
59.47

167.56
126,02

15.89!
165.63
139.98

6.57

103.61
133.00

99.49
103,00]

76.65 =
39.25
34.96

92.02
98.41
84.25
46.51

30.29
80.06
71.35

80.06

19.42
134,27
168.57

15.16
118.56

170.11
18,23

92.05

118.56

28.96
7,41

98.72
152.37

53.59
14.49

155,37
63.29

71.78
58.44

Period = 4.64 hours Inclination = 90 degrees

Table represents events during a 2 clay period.
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Table 3.2-6. Cont_ T'tmcsforMultip_be (P_ge_ ov_ IndianOcean)

Multiprobe

Perigee over the Indian Ocean

Satellite view time (in minutes) at the given stations.

Event # Wallops Goldstone Alaska Canberra Madrid
TDRS1 TDRS2 WPSA OS 16 ULAE DS 46 OS 66

1

2
3
4
5
6
7

8
9

10
Mean

Median

543.50
253.00
391.00
631.00
252.00
645.50

452.67

467.25

367.00
367.00
261.00
256.00
374.00
628.00
253.00

358.00

367.00

69.63

160.79
121.01

15.91
60.36

153.38
156.32

105.34

121.01

16.81
119.49

167.68
17.91
85.72

81.52J
85.72!

32.36
40.07

80.80
100.36
101.75

37.55

36.80!
73.85

105.42
108.96

71.79
77.33

77.72

18.96
170.53
118.15

17.54
168.49

66.46

91.12
77.72

56.71

152.05
61.82
13.20
44.83

146.50
131.36
166.81

96.66
96159

Period = 4.64 hours Inclination = 90 degrees

Above table represents events during a 2 day period.
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3.3 SPACECKAFr ORBIT CONSIDERATIONS

Each spacecraft in the EES series is planned to be placed into orbit using a Delta

launch vehicle, with the choice of orbit parameters depending on the instrument(s) carried

on that particular spacecraft. The Delta launch vehicle can launch into a significant range of

possible orbits, of which five were chosen for emphasis in this study.

3.3.1 Types of Orbits to be Supported

The following five typical orbits have been chosen by the EES Study Manager for

emphasis.

a.

b.

C.

d.

e.

Geosynchronous orbit: 0 ° Inclination, 36,000 km Altitude

Circular orbit: 28 ° Inclination, >500 km Altitude

Polar Orbit: 90 ° Inclination, >500 km Altitude

Sun-synchronous orbit: 97 ° Inclination, >700 km Altitude

Molniya: 63.4 ° IncLination, 370 - 40,000 km Altitude

All orbits except the geosynchronous and Molniya orbits are capable of being

supported by current TDRSS capabilities, although ATDRSS may be able to handle these

orbits too. In addition, all these orbits are capable of being supported by one or more

ground stations, but the percentage of time the EES could be in contact with the ground

station(s) would be much less than for TDRSS.

The Molniya orbits would require a direct downlink to one or more ground stations

exclusively, as current TDRSS support is limited to spacecraft which have altitudes of less

than 12,000 ima. However, ATDRS could handle a significant portion of a 12-hour

Molniya orbit.

3.3.2 Coverage Using Ground Stations

NOTE: The coverage diagrams shown in this section have been r_artxtuced from,

or adapted from coverage diagrams produced by GSFC Code 531.1 in support

of this study.
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A ground stationof the surfaceof the earth can observe a portion of the sky which is

defined by a conicalshape having the apex atthe siteof the station,the major axisof the

cone perpendicular to the surfaceof the earth and the sizeof the apex angle of the cone

defined by the angle from local zcnithover which the ground stationantenna can be

pointed. When a satelliteorbitintersectsthiscone, the ground stationcan contact the

spacecraft.The areaof the sky over which contactwith a spacecraftcan be made depends

on the angles over which the ground stationantenna can be pointed and the heightof the

spacecraft above the station. In practice, a ground station antenna can "see" nearly 85 ° each

side of local vertical, with some portions limited by local terrain. From this information, it

is possible to sketch the coverage of a ground station for different sateUitc altitudes. Figure

3.3-1 shows the coverage of the Wallops ground station for different satellite altitudes.

The shape of the coverage circle for the 500 km altitude is distorted from a circle by local

terrain, and this distortion also applies to viewing at higher altitudes. The plot of Figure

3.3-I for the higher altitudes is distorted because the map projection represents the

spherical earth on a fiat sheet of paper;, coverage circles which include the north pole appear

as strange open shapes covering the northern regions of the map.
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The geometry of a contact between a spacecraft and a supporting ground station is

complicated by the following factors:

The earth rotates a nominal 360 ° in 24 hours, which causes a point on the surface

to move from west to east at a rate which is an inverse function of the ground

latitude. A point on the equator moves at about 1,700 kin/hour. A point very

near the pole would move hardly at all in the same time.

The spacecraft moves in its orbit, with a velocity which depends on the altitude

of the spacecraft above the earth. Spacecraft in low altitude circular orbits move

more quickly than those in higher orbits; spacecraft in elliptical orbits move with

varying velocity depending on the instantaneous spacecraft altitude. The amount

of time required to complete one orbit of the spacecraft is not necessarily a

multiple of 24 hours, so a spacecraft in a stationary orbit which passed directly

overhead at a specific time on a specific day probably would be far from

overhead exactly 24 hours later.

The plane of the satellite orbit can rotate slowly (precess) around the earth at a

speed which is a function of the spacecraft orbital elements, but often amounts to

6.5 ° per day. Thus, a point on the earth passing through the plane of a

spacecraft orbit at a specific time on a specific day would probably be

significantly displaced from the orbit plane exactly 24 hours later. Calculating

link margins for elliptical LEOs is made difficult by this point since precession of

perigee makes contact times and slant ranges variable at a specific ground

statioa.

If one were to plot the line directly beneath a spacecraft (locus of spacecraft nadir points) on

the surface of the earth for a spacecraft in a circular orbit, it would resemble a sine wave

having an amplitude equal to the orbit inclination and a period related to the inverse of the

orbit altitude. This is shown in Figure 3.3-2, showing 24 hours of the subsatellite plot for

a spacecraft in a 500 km circular orbit of 28.5 ° inclination. If this plot were conri-ued for a

very large number of days, every point on the earth between 28.5 ° north and south latitude

3-15



e.
O

e.

O

i

°_

O
0_

O

m

i

O I

f

!

ol
i

i

I

o:

14

i'

i

I

O I

i 4

r

r I
i

'f
L

O
_P
m

C3
UD

I

C_

_ o $ o o O

C3
C3

I I _ I p

C_

(3
_D

! I-

oo

O

O
_D

O

O

O

l °c_
t

O

$

Q

i

i

0

I

I

I

o o _

I I I I I I I I i

3-16



would be covered. A special case of the circular orbit is the geosynchronous orbit, having

an orbital period of 24 hours. The subsatellite plot for that orbit would be a single point on

the equator for a spacecraft having an inclination of 0 °, or a vertical line extending to the

north and south orbit inclination. (These generalizations ignore slight variations caused by

the imperfect spherical shape of the earth or slight deviations from perfectly circular

spacecraft orbits.)

Figure 3.3-3 shows the subsatellite plot for the special case of an elliptical orbit called a

Molniya orbit. This case plotted is an orbit having a period of 12 hours, with perigee of

370 km and apogee of 40,000 kin. The orbit has a 63 ° inclination which causes the

spacecraft to pass over exactly the same point of the earth every day. In this case, the

spacecraft appears to move from west to east at low altitudes and then reverses direction at

high altitudes. The shape of this plot is further distorted by the fact that the map on which

it is plotted has significant distortion beyond 45 ° north and south latitude.

Subsatellite points for other elliptical orbits were not plotted due to the complicated nature

of the orbit. For example, if perigee of a polar elliptical orbit is near the South Pole it will

precess northward to the North Pole in 15 to 30 days, depending on the orbit parameters,

and then precess back south again. Fifteen to thirty plots would be needed to follow

perigee from south to north. It follows that the spacecraft communications would have to

be engineered to handle two constraints in order for one ground station to support it. The

first is the minimum contact time when perigee occurs directly over the ground station. The

second is when apogee occurs at the station horizon producing the maximum slant range.

Since every strawman experiment with a 90 degree inclination has an elliptical orbit the

above discussion becomes a serious consideration for the EES communications design. To

avoid designing the sp_ out of budget to meet the minimum contact time constraint

two other options can be considered. First, all of the strawman experiments listed as polar

orbits in Table 3.2-3 can be supported by TDRSS. Second, depending on the orbit

parameters, the minimum contact time constraint will last only five to ten days during a 30

to 60 day period respectively. If two ground stations lie on the opposite side of the world

from each other than when one has short contact times with a spacecraft in and elliptical

orbit the other will have long contact times. If appropriate arrangements are made, a

ground station in the southern hemisphere (e.g. Canberra Australia) could support the
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spacecraftduringtheperiodswhencontacttimewith anorthernhemispheregroundstation

(e.g.WallopsIsland)is to shortto completeadownlinkof thedata.

Returning to Figure 3.3-2, the amount of sky which can be viewed from the Wallops

station is plotted as an irregular, nearly circular shape centered at 38 ° north and 77 ° west.

As mentioned earlier, the irregularities are due to terrain masking. The figure demonstrates

that the station would be capable of making contact with the spacecraft on several

successive orbits, but then could not see the spacecraft until the next day. Figure 3.3-4

shows an enlarged section of Figure 3.3-2, emphasizing the area near the Wallops station.

From that figure, contact with the spacecraft can be made on 5 successive orbits, with no

additional contacts until a day later. Some days there may be only 4 contacts, depending on

the relative position of the ground tracks and the station. Note that, of the five passes, the

f'rrst in each day move in a northerly direction while the last passes move south. This is

typical of ground station contact with a spacecraft where the ground station is located

farther north or south than the orbit inclination.

Figure 3.3-5 is an enlarged section of the subsatellite plot for Wallops support of a

spacecraft in a near-polar orbit of 830 km altitude. In this case, the orbit inclination is

significantly larger than the latitude of the supporting ground station. This figure also

shows 5 contacts in one day, but timing of the contacts is different. The northbound group

of passes is significantly separated in time from the southbound passes. What has

happened here is that the ground station location has intersected the orbit plane for three

northbound passes, the spacecraft has passed out of view of the station for several orbits,

then the ground station location has intersected the orbit plane again on the same day,

seeing the spacecraft on the "backside" of the orbit.
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One of the sla'awman instruments specifies a 57 degree inclination circular orbit. This mid-

range inclination orbit will produce passes over the ground station in an uneven interval.

That is, the spacecraft will make a couple passes over the ground station and then will not

be seen for about five hours, at which time it will make a couple more passes over the

ground station. The spacecraft will then not be seen for about 12 to 14 hours, at which

time it will make a couple more passes over the ground station and then repeat the pattern

[Ref. 8]. For this orbit the 24 hours onboard storage of data is not needed as for the 28

degree LEO and 12 hours onboard storage of data may not be sufficient as it is for the truly

polar orbits.

The specific number of minutes a day a ground station will contact a spacecraft depend on

the station location and the orbit geometry, with contact ranging from about 30 minutes a

day for Wallops support of a 500 km 280 LEO to several hours a day for a Molniya orbit

with apogee placed over the supporting ground station. If a ground station were placed on

or near the equator to support a spacecraft of 0 ° to 10 ° inclination, the station could contact

the spacecraft on every orbit, with the contact time each orbit depending on the orbit

altitude.

3.3.3 Contact Time Constraints

The contact time with a spacecraft cannot exceed the aggregate view period from all

communications contact points used to support the spacecraft. Thus, a LEO spacecraft

supported by TDRSS has a nearly full-time view period, being out of view only during

passes through the ZOE. A low altitude spacecraft or an eUiptical orbit spacecraft which is

supported by ground stations will have a significantly shorter view period because of the

limited portion of the orbit viewable from ground station locations. This limitation is

exacerbated by the very small number of ground stations which will exist during the EES

era. Not even during pre-Shutde manned flight programs, using some two down ground

stations, was nearly continuous coverage of a low altitude spacecraft achievable using

ground stations.

In practice, the actual contact time will be less than the view period due to both

technical and programmatic considerations. Typical technical considerations include the
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time requiredto transferbetweenTDRSsif only one mechanicallysteerablehigh gain

antennais usedon the supported spacecraft, blockage of the view from the spacecraft to

TDRS by the spacecraft body or appendages on the supported spacecraft, or look angle

constraints on the line of sight f_m the spacecraft antenna to the TDRS for certain attitudes

of the supported spacecraft. Typical programmatic considerations include agreements

concerning the maximum volume of data or transmission time allowed a specific spacecraft.,

or requirements of higher priority spacecraft for use of the same data handling facilities at

the same time,

Exact view periods for various strawman orbits with various ground stations and with

TDRSS were calculated by Code 554.0 using a computer algorithm called ACQSCAN,

Typical view periods for the strawman experiments where then produced by taking and

average of the exact values. Individual contact times less than five minutes in duration are

useful for commanding but are not useful for downloading the data so they where not

figured into the average. The typical view periods derived from the Code 554.0 data

appear in tables in Appendix A.
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SECTION4"- SPACESEGMENTCOMMUNICATIONS AND DATA HANDLING

SUBSYSTEMS,DESIGNCONSIDERATIONS

This sectiondiscussesconsiderationswhichwill affectdesignchoicesfor theEESspace

segmentcommunicationsanddatahandlingsubsystems.Pertinentaspectsof thedesignsadopted

bytheEESStudyTeamfor thecommunicationsanddatahandlingsubsystemsaresummarizedin

Section4.1. Sections4.2 through4.6discussesconsiderationswhich eachof theselectedorbits
andcandidateinstrumentsfor theseorbitswould imposeon theEESdesign.These considerations

are discussed in reference to the background, requirements and drivers already presented in

Sections 2 and 3. No single solution represents an optimal choice for all orbits and candidate

instruments covered in this study.

4.1 SPACECRAFT SUBSYSTEM DESIGN

The design approach for the space segment communications and data handling subsystems

adopted by the EES Study Team employs a baseline system and enhanced versions [Ref. 2], all of

which operate at S-Band. This report has studied the baseline and enhanced version as follows:

The baseline design providing an average bit rate of 10 kbps, using a TDRSS-

compatible transponder and omnidirectional antennas. Note that this design cannot be

used to transmit greater than 4 kbps via TDRS [Ref. 2]; higher rates will be transmitted

directly to a ground station.

An enhanced design providing an average bit rate of 100 kbps, using a TDRSS-

compatible transtx_dea" and a high gain antenna. Note that this design can be used to

transmit any data rate the TDRSS SSA system can handle.

During the course of the study, there was a report of a low-cost TDRSS transponder being

developed by GSFC Code 531. This transponder was investigated and found to be a low-cost

transponder developed for a balloon test program; the transponder was low-cost because the

program did not require use of space-qualified components. Such a transponder cannot be
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recommendedfor'the EES application, and the cost of achieving space-qualification would be

between 5 and 10 million dollars.

In principle, the SN with two operating TDRSs provides near-continuous coverage,

allowing data to be transmitted in real time. The spacecraft geometry and mission pointing

requirements for a specific spacecraft, however, may limit the time that the spacecraft can point its

antenna(s) to a TDRS. In the case of COBE, this effect limited the coverage time to between 17%

and 36%, depending on the season. Scheduling of communication, passage through the zone of

exclusion, transfers between TDRSs, and maintenance periods will also reduce the coverage time

available. Therefore, on-board data storage will be required even with SN communication. Dual

recorders would be necessary for redundancy and uninterrupted data recording during playback

periods.

4.1.1 Baseline Design

This design is conceived as being a spacecraft generating an average data rate of 10 kbps,

including I kbps of engineering data, science data, overhead for CCSDS packetization, and any

error correction coding desired in addition to the TDRSS convolutional encoding. The overhead

for error correction will be reduced tremendously if the Reed Solomon encoding is used. This

design is conceived as using a TDRSS-compatible transponder and an omnidirectional spacecraft

antenna for tracking, receipt of commands, and return of real-time telemetry, with the restriction

that the low power transmitted by the spacecraft will limit the data rate transmitted to TDRSS to

less than 4 kbps. TDRSS contacts would be scheduled on about six-hour intervals for

transmission of engineering real-time data, commands and tracking data; with each contact lasting a

nominal 20 minutes.

In addition to data transmission via TDRSS, the spacecraft would transmit stored

engineering and science data directly to a ground station when it is within view. Because the

propagation distance from the spacecraft to a ground station would be significantly shorter than the

transmission distance to a TDRS, the spacecraft Radio Frequency (RF) subsystem could support a

much higher data rate when transmitting to a ground station than would be possible via TDRSS.
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ThebaselinedesignWouldincludeon-boarddatastorageof asmuchas3 Gigabits(Gbits),which

wouldbetransmitteddirectly to agroundstationastheEffectiveIsotropicRadiatedPowerCEIRP)

generatedby thebaselinedesigncouldnotaccommodatehighdataratestransmittedvia TDRSS.

4.1.2 EnhancedDesign

Thisdesignisconceivedasbeinga spacecraftgeneratinganaveragedatarateof 100kbps

from the spacecraft,including 1 kbpsof engineeringdata,sciencedata,overheadfor CCSDS

packetization,and anyerror correctioncodingdesiredin addition to the TDRSSconvolutional
encoding. This discussionassumesthe enhancedsystem would use a TDRSS-compatible

transponderanda high gain spacecraftantennafor tracking, receiptof commands,andreturnof
either real-time or stored telemetry. TDRSScontactswould be scheduledon about six-hour

intervals,with eachcontactlastinganominal20minutes.

This design would also include on-board storageof 3 Gbits of data, which would be

transmittedvia TDRSSor directly to oneor moregroundstations,with thechoiceof transmission

pathdependingon theorbit of thespacecraft.

4,2 SPECIALCONSIDERATIONSFORA GEOSYNCHRONOUSORBIT

The geosynchronousorbit (GEO)canonly besupportedby TDRSSif it is placedcorrectly

in orbit where a TDRS can view it. Until ATDRSS is in place, it is more likely that all

communication to the GEO spacecraft would be via a ground station. Either Wallops or GSFC

could be used as the location of the ground station for a GEO of 28 ° inclination, provided the

subsatellite point were kept between 40 ° and 110 ° west longitude.

When using a spacecraft antenna of 19 dB gain, the communication subsystem will

support transmission of 100 kbps. Thus, the baseline design case could be supported provided

playback were kept to 100 kbps.
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The candidateinsmmaentfor a GEO, SYNOP, is listed with a very low bit rate which

shouldposenodesignproblem. However, we believe that the stated data rate is in error since the

mission expects to be an I'UE type. Therefore, a 20 to 40 kbps data rate is more reasonable and

40 kbps is the value used in this study. A final consideration is that a minimum of two ground

antenna systems should be capable of supporting the spacecraft, providing redundancy should the

primary ground communication system be temporarily disabled.

4.3 SPECIAL CONSIDERATIONS FOR A 28 ° INCLINATION LOW EARTH ORBIT

The baseline design, with a ground station at Wallops or GSFC, could support the 28 ° Low

Earth Orbit case for either I0 kbps or I00 kbps average data rates, and could support dumps of

stored data at rates of 3 Mbps. TDRSS could be utilized for tracking, commands and real-time

data, provided the return data rate did not exceed 4 kbps.

The major restriction when supporting this orbit with a ground station at Wallops or GSFC

is the amount of time the spacecraft would be out of view. The spacecraft could be viewed on four

or five successive orbits, covering a span of 6 to 7.5 hours, with no further contact until the next

day. At the 100 kbps average rate, dump of the day's stored data might require two contact

periods. As long as there is a redundant storage device on-board, this could be accomplished at the

price of a more complex data management scenario than would be required if all data could be

dumped during a single contact period.

Of the instruments listed in Table 3.2-3 which would require a 28 ° LEO, any of the 12

could be supported with the following exceptions:

HEASI and LUXarc listed with an average bit rates of 150 kbps and 120 kbps

respectively, which should pose no problem since the system would be capable of

supporting data rates much higher than that.
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Lyman ts lis_..d with a peak data rate of 48 Mbps, which cannot be supported with an S-

Band transponder. An X-Band or K-Band system would be required, which is beyond

the capability planned to EES.

4.4 SPECIAL CONSIDERATIONS FOR A 90 ° INCLINATION LOW EARTH ORBIT

In most respects, the communications and data storage subsystem considerations for this

case are the same as those for the 28 ° LEO. The most significant difference is that the 90 ° orbit

inclination would result in a total of 4 or 5 passes a day being visible from Wallops or GSFC, with

these passes being spread across two groups of view periods separated by 12 hours. For planning

purposes, one could count on 2 passes of 12 minutes separated by 95 minutes, followed by 2 more

passes 12 hours later.

Of the instruments listed in Table 3.2-2, seven of them are candidates for a 90 ° LEO, but

none of them could be satisfied by the baseline design because the average bit rate would exceed

10 kbps. However, the needs of AEROS and AIM, with average bit rates of 16 kbps and

14 kbps respectively, could be satisfied with adjustment of the instrument requirements and

careful optimization of the baseline design. Still, it might be necessary to increase the baseline

capability of the baseline design. Six of the instruments could be easily supported by the enhanced

design.

Of them, ARTBE and Multiprobe Explorer Mission are listed with orbital which only

slightly exceed the 12,000 km limit for full-time TDRSS coverage. ARTBE and Multiprobe

Explorer Mission have data rate requirements which could be satisfied by the EES enhanced

design.

The other instrument, Microphysics Explorer, is listed with an average bit rate of

800 kbps, which cannot be satisfied by either of the proposed EES designs. This instrument

would generate 7x1010 bits every 24 hours, requiring very large on-board storage if it were

supported by a ground station. If it were supported by TDRSS, it would require K-Band

communications because a reasonable data storage and dump scenario would exceed the 3 Mbps
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rate supportableat S-Band,but K-Band hasbeenexcluded from the EES conceptualdesign

becauseof projectedcostLimits.

4.5 SPECIALCONSIDERATIONSFORA SUN-SYNCHRONOUSORBIT

Theconsiderationsfor thebaselinedesignand theenhanceddesignarethe samefor the

sun-synchronousorbit caseasfor the90° LEO.

Of the instrumentslistedin Table 3.2-2,threearecandidates for a sun-synchronous orbit.

Only one,NIREX, could be supported by the baseline design because the average bit rate of the

other two would exceed 10 kbps by a large margin. SAMEX could be supported by the enhanced

design. Astro/Atmos could not be supported by the enhanced design using a single ground station

because the average data rate of 300 kbps would generate 1.3x10 I0 bits in 12 hours, exceeding

the on-board storage capacity by a factor of four.

4.6 SPECIAL CONSIDERATIONS FOR A MOLNIYA ORBIT

A Mohaiya orbit is an elliptical orbit having geometry which results in the same part of the

orbit occuring over the same point of the earth once each day. Depending on orbit paran_ters, the

orbital period could be 24 or 12 hours, ff the orbit were positioned so that apogee matched the

longitude of a particular ground station, that ground station would have significantly long view

periods. One or more dumps of stored data could be scheduled for each day, depending on orbit

geometry. Because of the large ranges involved in supporting a Molniya orbit, any reasonable

design for this orbit must include a high power transmitter and a high gain antenna for support of

the return data link. The forward data link can utilize the high gain antenna for normal operations,

but must be designed with a backup link operating at a low data rate to allow emergency

communication to the spacecraft should the high gain antenna fail to be pointed correcdy.

Of the instruments listed in Table 3.2-2, two are candidates for a Molrdya orbit. IMAGE is

not a true molniya orbit since it has a 90 degree inclination but its orbit altitude is too high to
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considerit to bealow earthpolarorbit. Thelong contacttimeswith a groundstationandorbit

altitudemakeit easiertodealwithasamolniyatypeorbit. IMAGE hasorbital requirementswhich

may not besatisfiedby the Delta launchvehicle. QUASAT hasdatarate requirementswhich
cannotbesatisfiedby eitherof theEESdesigns.
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SECTION5 - MISSIONCOMMUNICATION USINGEXISTING SN & GROUND STATION
FACILITIES

Section3of thisreportdescribedcharacteristicsof thefive classesof orbitsto besupported

by the EES. In addition, a strawmanset of instrumentswas presentedfor use in assessing

suitability of various alternativesfor usewith potential EES instruments. Capabilitiesof the

existing NASA SN andgroundstationsto receivedata from the EESdesignsanddatarates in
theseorbitshasbeenanalyzed;theresultsof thatanalysisis presentedin this section. In addition,

theanalysisconsideredSN andgroundstationscapability to receivedatafrom the EESdesigns,

but usingdataratesandorbit parametersfor the strawmansetof instruments,with theresultsof
that analysispresentedhereaswell. In this sectionit is assumedthat dataacquisitionanddata

processingareperformedusingNASA resources,with subsequentdelivery of theprocesseddata
to scientific investigators.Forwardlink performancewasnotanalyzedbecausethe EESdesigns

wereconsideredto provideadequatemarginsfor minimumrates,andspecificratesneededfor the
strawmaninstrumentswerenotavailable.Alternativeapproachesfor communicatingwith EESare

discussedin Section6.

5.1 COMMUNICATION USINGTHE SPACENETWORK

Communicationvia the SN requiresthat the userspacecraftbe visible to one or both

TDRSs in orbit; also that the user spacecraft has sufficient sensitivity to receive signals from a

TDRS and can generate sufficient radiated RF energy to provide an adequate return signal to a

TDRS. Though phase-in of ATDRSS is scheduled to start in 1997, complete phase-out of TDRSS

will not occur until fours years after the projected start of EES launches. Therefore, it is necessary

to design for current TDRSS capabilities, ATDRSS capabilities should be considered as they

become available. Requirements for satisfactory performance with the TDRSS were obtained from

the SN Users' Guide, [Ref. 3].
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5.i.1 Coverage Using the Space Network

Use of the TDRSS provides visibility of an EES in a LEO or sun-synchronous orbit for at

least 85% of each orbit. The actual contact time achieved in practice may not equal, this because of

operational requirements of other spacecraft sharing use of the TDRSS, or other scheduling and

spacecraft priority factors beyond the control of the EES. A detailed loading study would be

required before f'u'm support commitments would be made by NASA.

Of the five classes of orbits, the GEO orbit and a significant portion of the Molniya orbit

cannot be supported by the current TDRSS. The ATDRSS should be able to communicate with

most of the possible locations of a GEO orbit, and could support a Molniya orbit provided apogee

were placed in an area viewable by one of the ATDRS, and provided the communications link had

a positive margin over those parts of the orbit where contact were desired.

5.1.2 Communications Margins Using the Baseline Design with the Space Network

The return link for the baseline design EES will employ a 5 watt transmitter power and a

shaped omni antenna. Assuming a spacecraft cable and diplexer loss of -3 dB results in an

effective isotropic radiated power (EIRP) of 4 dBW. The link analysis has assumed a polarization

loss of -0.5 dB, an RFI environment loss of -0.5 dB, and a -3.0 dB user spacecraft degradation

loss, as these are typical values used by Code 531 when predicting user spacecraft support by

TDRSS. User spacecraft pointing loss was assumed to be 0 dB because the baseline design will

employ an omnidirectional antenna, and user incompatibility loss was assumed to be 0 dB because

the design wRl employ a TDRSS-compatible transponder.

Using the values justdiscussed,the return linkparameters for the baseline design are

shown in the Table 5.1.2-1spreadsheet. The GEO orbitis shown for completeness, but link

parameters have been blanked out,as TDRSS cannot supportthatorbit.A spacecraftina 500 km

circularorbit(orbitalinclinationmakes no differencefor TDRS$ support)transmittinga I kbps

data rate,the net linkmargin using the TDRSS cross-supportmode would be 3.5 dB. Support in

the normal MA mode would not be possibleas therewould be insufficientEIRP to produce a
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positive margin in thatmode, even for the I kbps return link data rate. Considering other orbits,

the net margin for an 833 km circular orbit (a sun-synchronous case) would be 3.3 dB, and the

net margin for a 12,000 km circular orbit would be 0.9 dB. The reason for the relatively small

differences in net margin for these different orbits is that the maximum path length from the user

spacecraft to TDRSS changes relatively little since the major contributor to the path length is the

orbital height of the TDRS.

5.1.3 Communications Margins Using an Enhanced Design with the Space Network

The return link for this enhanced design EES concept will employ a 5 watt transmitter

power and a planar array of 28 dB gain. Assuming a spacecraft cable and diplexer loss of -3 dB

results in an EIRP of 38.5 dBW. The same assumptions have been made concerning RFI

environment loss (-0.5 dB), user spacecraft degradation loss (-3 dB), and incompatibility loss

(-0 riB) as were made for the baseline design. Since this design will employ a high gain planar

array, a polarization loss of -3 dB has been included.

Using the values just discussed, the return link parameters for the enhanced design are

shown in the Table 5.1.3-i spreadsheet. The data rare of concern for this case is the playback rate

of 1,250 kbps, as the real-time margin was shown to be viable using the lower EIRP of the

baseline design. The margins shown are unacceptable, but only slightly negative indicating careful

engineering and optimization of the communications system is needed. If about 3.6 dB can be

added to the system than it will be able to handle the playback rate of 1,250 kbps for orbits out to

12,000 kin. As for the baseline case, orbital inclination makes no difference for TDRSS support,

and links are shown for orbits of 500 kin, 833 km and 12,000 lan circular orbits. The same

figures would apply to elliptical orbits, provided the orbital altitude did not exceed 12,000 kin.
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Table 5.1.2-1. SN Return Link Margins, Baseline Design.

EES LINK CALCULATION
TDRSS Support

SPACECRAFT RETURN LINK

Data Rate (kt_s)
Carrier Frequency (MHz)
XmitterPower (watts)
XmitterPower (dBW_
ModulationLoss (dB)
Cable/Oiplexer Loss (dB)
Xmit Ant Gain (dB)
EIRP (dBW)

TRANSMISSION MEDIUM

Minimum Range (kin)

Maximum Range (kin)
Min Range Path Loss(dB)
Max Range Path Loss (dB)
User Pointing Loss (dB)
User Polarization Loss (dB)
RFI Environment Loss (dB)
User Incompatibility Loss (dB)
Min Range Total Loss (dB)
Max Range Total Loss (dB)

USER-TORS CHARACTERISTICS

Req'd SSA Signal (dBW)
Req'd SMA Signal (dBW)
Max Rcv'd Signal (dBW)
Min RcVd Signal (dBW)
User SJC Dean (d8)
User SSA Margin Max Range (dB)
User SMA Margin Max Range (dB)

SPACECR/I,I=TORBIT

User P_gle (kin)
(krn)

Minimum I_ (kin)
Maximum Range 0on)

Orbit 1 Orb 2,3 Orb 2,3 Orbit 4 Orbit 5
(Geo) (500kin) (12kkm) (SSyn¢)(Molniya)

1.o 1.0 1.0 1.0 1.0
2287.5 2287.5 2287.5 2287.5 2287.5

5.0 5.0 5.0 5.0 5.0
7.0 7.0 7.0 7.0 7.0
0.0 0.0 0.0 0.0 0.0

-3.0 -3,0 -3.0 -3.0 -3.0
19.0 0.0 0.0 0.0 19.0
23,0 4,0 4.0 4.0 23.0

0.0
-0.5

-0.5
0.0

-196.0
-186.0

-3.0

35784.0
35784.0

35363.0
44052.8

-190.6
-192.5

0.0
-05
-0.5
0.0

-191.6
-193.5

-196.0
-186.0
-187.6
-189.5

-3.0
3.5

-6.5

500.0
500.0

35,363.0
44052.8

23863.0
58939.9

-187.2
-195.0

0.0
-0.5
-0.5
0,0

-188.2
-196.0

-196.0
-186.0
-184.2
-192.1

-3.0
0.9

-9.1

12000.0
12000.0
23863.0
58939,9

35030.0
44909.1

-1905
-192.7

0.0
-0,5
-0.5
0.0

-191.5
-193.7

-196.0
-186.0
-187.5
-189,7

-3.0
3.3

-6.7

833.0
833.0

35030.0
44909.1

23863.0
87664.9

-187.2
-198.5

0.0
-0.5
-0.5
0.0

-188.2
-199.5

-196.0
-186,0
-166.2
-176.5

-3.0
16,5

6.5

370,0
40000.0
23863.0
87664.9

Earth radius at equator (km)
User apogee above earth center (kin)
TDRS above equator (kin)
TDRS above earff_center (kin)

6378.1
42162.1

3586,3.0
42241.1

6378.1
8878.1

35863.0
422,41.1

6378.1
16378.1
35863.0
42241.1

6378.1
7211.1

35863.0
42241.1

6378.1
46378.1
35863.0
42241.1
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Table 5.1.3-1. SN Return Link Margins, Enhanced Design

EES LINK CALCULATION
TDRSS Supqott

SPACECRAFT RETURN LINK
Data Rate (kt_s)
Carrier Frequency (MHz)
Xmi_er Power (watts)
XmitterPower (dBW)
ModulationLoss (dB)
Cable/Diplexer Loss (dB)
Xrnit Ant Gain (dB)
EIRP (dBW)

TRANSMISSION MEDIUM
Minimum Range (kin)
Maximum Range (kin)
Min Range Path Loss (dB)
Max Range Path Loss (dB)
User Pointing Loss (dB)
User Potar=ation Loss (dB)
RFI EnvironmentLoss (dB)
User Incompatibility Loss (dB)
Min Range Total Loss (dB)
Max Range Total Loss (dB)

USER-TDRS CHARACTERISTICS

Req'dSSASigr_ (dBW)
Req'd SMA Signal (dBW)
Max Rcv'dSignal (dBW)
Min Rcv'd Signal (dBW)
User S/C DegrtKlatlon (riB)
user SSAMarginMa=Ran0e(_)
User SMA Margin Max Range (dB)

SPACECRN=T ORBIT

user P_g_ (kin)
user _ (kin)
Minimum _ (kin)
Maximum Range (kin)

OrbitI Orb 2,3 Od_ 2,3 Orbit4 Orbit5

(Geo) (500kin) (12kkm) (SSync)(Molniya)

125o.o 125o.o 125o.o 1250.o 125o.o
2287.5 2287.5 2287.5 2287.5 2287.5

5.0 5.0 5.0 5.0 5.0
7.0 7.0 7.0 7.0 7.0
0.0 0.0 0.0 0.0 0.0

-3.0 -3.0 -3.0 -3.0 -3.0
190 28,0 28.0 28.0 19.0
23.0 32.0 32.0 32.0 23.0

0.0
-0.5
-3.0
0,0

-166.0

-3.0

35784.0
35784.0

35363.0
44052.8

-190.6
-192.5

0.0
-0.5
-3.0
0.0

-194.1
-196.0

-166.0

-162.1
-164.0

-3.0
-1.0

500.0

500.0
35363.0
44052.8

23863.0
58939.9

-187.2
-195.0

0.0
-0.5
-3.0
0.0

-190.7
-198.5

-168.0

-158.7
-166.6

-3.0
-3.6

12000.0
12000.0
23863.0
58939.9

38030.0
44909.1

-190.5
-192.7

0.0
-0.5

-3,0
0.0

-194.0
-196.2

-166.0

-162.0

-164.2
-3.0

-1.2

833.0
833.0

35O30.0
44909.1

23863.0
87664.9

-187.2
-198.5

0.0
-05
-3.0
0.0

-190.7
-202.0

-166.0

-167.7
-179.0

-3.0
-16.0

370.0
40000.0
23863.0
87664.9

Earth radiusat equator (kin)
User apogee alooveearth center (kin)
TDRS alive equator (km)
TDRS above earthcenter(kin)

6378.1
42162.1
35863.0
42241.1

6378.1
6878.1

35863.0
42241.1

6378,1
18378.1
35863.0
42241.1

6378.1
7211.1

35868.0
42241.1

6378.1
46378.1
35863.0
42241.1

5-5



5.1.4 Communications Margins Using the Strawman Instruments with the Space Network

Section 5.1.2 has shown that the baseline design can return a 1 kbps data rate with a

comfortable margin. Section 5.1.3 has shown that the enhanced design could support the planned

playback rate of 1250 kbps provided the communications system is optimized. This section

includes discussion pertinent to the degree to which these designs could satisfy the strawman

instruments.

Table 5.l.4-i shows each of the instruments which could be supported by TDRSS.

Communications margins for return of the peak data rate (assumed to be the real-time insmmaent

output when operating in whatever operational mode would generate the highest data rate) are

shown in this table. Since the average data rate from each of these instruments except one exceeds

10 kbps, the table lists parameters for only the enhanced design.

Of the 22 instruments having orbits supportable by TDRSS, 15 could be supported by the

enhanced design. These include AEROS, AIM, Asteroseismology Explorer, EMAO, EXCAM,

HECRE, HXRE, HXSIE, MELTER, Multiprobe Explorer Mission, NAE, NIREX, SAMEX,

SOFE, and SpEx, which can be supported without reservation. ARTBE has a slightly negative

margin which is unacceptable, but it could be supported ff careful design and optimization of the

communications system could bring the link margin positive.

One instrument, SHAPE, has an average data rate which can be supported by the enhanced

design, but the 2,300 kbps real-time data rate exceeds the planned dump rate of 1,250 kbps. The

TDRSS S-Band system can support such a data rate, but the link calculation shows a negative

margin at the 2,300 kbps rate. By increasing the transmitter power to 28 watts the instrument

could be suppormd without problem, this could be another version of the enhanced EES design.
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Four of the instruments, Astro/Atmos Spect. Explorer, HEASI, LUX, and Microphysics Explorer

have average data rates which significantly exceed the planned average data rate of the enhanced

design. With peak data rates of 300 kbps, 1,000 kbps, 120 kbps and 800 kbps, respectively,

the peak data rate could be returned via TDRSS, even though the averages exceed 100 kbps.

Thus, return of real-time data from these instruments could be supported for limited periods of

time, but return of all data generated would require much more frequent data dumps than planned,

and perhaps more frequent contacts than could be supported by TDRSS unless the spacecraft had a

very high priority.

One of the instruments, Lyman, has a peak data rate of 48,000 kbps with an average rate

of 24 kbps. The real-time rate of this instrument cannot be supported by an S-Band system, but

the average rate could easily be supported by the enhanced design. The 'Required SSA Signal' at

the TDRS is shown on Table 5.1.4-1 as being -163 dBW, this is the required signal level for a

3 Mbps (not 48 Mbps) data rate which is the maximum rate the SSA can handle.

5.2 COMMUNICATION USING GROUND STATIONS

NASA maintains very few ground facilities, compared with those maintained before the

TDRSS became operational. However, the remaining ground stations are organized into three

networks: ground stations, operated by GSFC; WPS, also operated by GSFC; and the DSN,

operated by the Jet Propulsion Laboratory (J'PL). All of these facilities support the NASA standard

S-Band transponders with a 240/221 transponding ratio. Other carrier frequencies and system

capabilities are supported at individual facilities.

5.2.1 Communications Margins Using the Baseline Design with the Ground Stations

This EIRP radiated by the EES baseline design will be 4 d.BW, the same as was discussed

in Section 5.1.2. The major differences between this situation and support via TDRSS are the G/r

of the receiving antenna and the path length over which the data must be transmitted. This means
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thatmuchhigherdataratescanbetransmittedwith thesamespacecraftdesign.Thepenaltyis that

a groundstationcanseethe spacecraftduring only a small percentageof eachorbit. For the
baselinedesign,a shapedomniantennahasbeenbaselinedfor eachorbit class.

Using the valuesjust discussed,the return link parametersfor the baselinedesignare

shownin the Table 5,2.1-1spreadsheet.The datarate shownis the baselinedatadump rateof

650kbps. All casesshowpositivemarginswhich areacceptable.

5.2.2 CommunicationsMarginsUsinganEnhancedDesignwith GroundStations

ThisEESenhanceddesignhasbeen baselined for use with a ground station only for orbits

above 12,000 kin. Table 5.2.2-1 is a spreadsheet which has been constructed using all five

classes of orbits, but using spacecraft parameters of a 5 watt transmitter and a shaped omni

antenna. This shows what could be used as a backup to transmission via TDRSS should the high

gain antenna on the spacecraft suffer an outage. In the case of the 12,000 km orbit, the margin

would be negative if the antenna fails. For 12,000 km orbits, having a higher power transmitter

with a 5 watt transmitter as backup would allow more room for failure of a component, since both

transmitter and antenna would have to fail for the Link margin to be negative.

The geosynchronous and the Molniya orbits have been baselined for EES with a 5 watt

transmitter and a 19 dB antenna, and a shaped omni as the redundant antenna. The 19 dB antenna

would allow an adequate signal margin, but the shaped omni would not provide an adequate signal

margin to continue normal operations if the high gain antenna failed. A ground station with higher

G/T performance could be used, but it may not be possible to arrange long-term support by such a

system unless the EES Project purchased it.
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Table 5.2.1-1. Ground Station Return Link Margins, Baseline Design

EES LINK CALCULATION
Direct to Ground, not via TDRSS

SPACECRAFT RETURN LINK

Data Rate (kbps)
Career Frequency (MHz)
Xmitter Power (watts)
Xmitter Power (dBm)
Modulation Loss (riB)
Cable/Diplexer Loss (a8)
Xmit Ant Gain (dB)
EIRP (dBm)

TRANSMISSION MEDIUM

Minimum Range (krn)
Horizon Mask Range (k/n)
Atmospheric At'ten(dB)
Rain Atten (dB)

User Pointing Loss (dB)
User Polarization Loss (dB)
Ovemead Path Loss (dB)
Hodz Mask Path Loss ((:18)

USER-GND SYST CHARACTERISTICS
Gnd Ant Diameter (ft)
Gnd Ant Gain (dB)
Overhead RcvdPwr (dBm)
Hortz Mask Rcvd Pwr (dBm)
System Noise Temp (K)
System G/T (dB/K)
Overhead Channel SNR (EtWNo)
Hortz Mask Channel SNR (Eb/No)
Req'dSNR (B:VNo)

User_ Dean (dB)
Ovemead _ Margin.(dB)
HorizMask SignalMargin(dB)

SPACECRAFT ORBIT PARAMETERS

Pengee (kin)
Apogee (kin)
Horizon Mask (deg)
Minimum Range (kin)
Maximum Range (kin)

EarthRadiusat35 tat

Re + Perk:jee

Orbit 1 Orb 2,3 Orb 2,3 Orbit 4 Orbit 5

(Geo) (500kin) (12kkm) (SSyno)(Molniya)
6543.0 650.0 650.0 650.0 650.0

2287.5 2287.5 2287.5 2287.5 2287.5
50 5o 5.0 5.0 5.0

37.0 37.0 37.0 37.0 37.0
0.0 0.0 0.0 0.0 0.0

-3.0 -3.0 -3.0 -3.0 -3.0
19.0 0.0 0,0 0.0 19.0
53.0 34.0 34.0 34.0 53.0

35784.0 500.0 12000.0 8,33.0 370.0
40053,9 1694.5 16159.5 2433.6 44837.6

0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

-190,7 -153.6 -181.2 -158.1 -151.0
-191.7 -1642 -1&3.8 -167.4 -192.7

30 30 30 30 30
44.1 44.1 44.1 44.1 44.1

-93.6 -75.5 -103.1 -79.9 -53.9
-94.6 -86.1 -105.7 -89.2 -95.6
150.0 150.0 150.0 150.0 150.0
22.4 22.4 22.4 22.4 22.4
25.1 43.2 15.6 38.8 64.8
24.1 32.6 13.0 29.5 23.2

9.6 9.6 9.6 9.6 9.6
-3.0 -3.0 -3.0 -3,0 -3.0
12.5 30.6 3.0 26.2 52.2
11.5 20.0 0.4 16.9 10.6

35784.0 500.0 12000.0 833.0 370.0
35784.0 500.0 12000.0 833.0 40000.0

15.0 10.0 10.0 10.0 10.0
35784.0 500.0 12000.0 833.0 370.0
40353.9 1694.5 16159.5 2433.6 4_37.6

6370.0 6370,0 6370.0 6370.0 6370.0
42154.0 6870,0 18370.0 7203.0 46370.0
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Table 5.2.2-1. Ground Station Return Link Margins, Enhanced Design Contingency

EES LINK CALCULATION
Direct to Ground, not via TDRSS

SPACECRAFT RETURN LINK

Data Rate (kbps)
Carrier Frequency (MHz)
Xmitter Power (watts)
Xmitter Power (dBm)
Modulation Loss (dB)
Cable/Dil_exer Loss (dB)
Xmit Ant Gain (dB)
EIRP (dBm)

TRANSMISSION MEDIUM
Minimum Range (kin)
Horizon Mask Range (kin)
Atmospheric At'ten (d8)
Rain Atten (dB)
User Pointing Loss (dB)
User Polarization Loss (dB)
Overhead Path Loss (riB)
Hortz Mask Path Loss (dB)

USER-GND SYST CHARACTERISTICS
Gnd Ant Diameter (ft)
Gnd Ant Gain (dB)
Overhead Rcvd Pwr (dBm)
Hortz Mask Rcvd Pwr (dBm)

System Noise Temp (K)
System G_ (riB/K)
Overhead Channel SNR (Eb/No)
Hortz Mask Channel SNR (Eb/No)
Re<i'd SNR (EkYNo)
User S/C Oegredation (dB)
OverheadSign=Mam'm (c_)

Horiz Mask SignalMargin (d8)

SPACECRAFT ORBIT PARAMETERS

Perigee (kin)
AIxx3ee (kin)
Horizon Mask (deg)
Minimum Range (kin)
Maximum Range (kin)

EarthRad_s at35 L_

Re + Perigee

Orbit 1 Orb 2,3 Orb 2,3 Orbit 4 Orbit 5
(Geo) (500kin) (12kkm) (SSync) (Molniya)

1250.0 1250.0 1250.0 1250.0 1250.0
2287,5 22875 2287.5 2287.5 2287.5

5.0 5.0 5.0 5.0 5.0
37,0 37.0 37.0 37.0 37.0

0.0 0.0 0.0 0,0 0.0
-3.0 -3.0 -3.0 -3,0 -3.0
0.0 0.0 0.0 0,0 0.0

34.0 34.0 34.0 34.0 34.0

35784.0 5000 12000.0 833.0 370.0
40053,9 1694.5 16159.5 2433.6 44837.6

0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

0.0 0,0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

-190.7 -153.6 -181,2 -158.1 -151.0
-191.7 -164.2 -183.8 -167,4 -192.7

30 30 30 30 30
44.1 44.1 44.1 44.1 44.1

-112.6 -755 -103.1 -79.9 -72.9
-113.6 -86,1 -105.7 -89.2 -114.6
150.0 150.0 150.0 150.0 150.0
22.4 22.4 22.4 22.4 22.4

3.3 40.4 12.8 35.9 43,0
2.3 29.8 10.2 26.6 1.3
9.6 9.6 9.6 9,6 9.6

-3.0 -3.0 -3.0 -3.0 -3.0
-9.3 27.8 0,2 23.3 30.4

-10.3 17.2 -2.4 14.0 -11.3

35784.0 500.0 12000.0 833.0 370.0
35784.0 500.0 12000.0 833.0 40000.0

15,0 10.0 10.0 10.0 10.0
35784.0 500.0 12000.0 833.0 370.0
40053.9 1694.5 16159.5 2433.6 4.4837.6

6370.0 6370.0 6370.0 6370.0 6370.0
42154.0 6870.0 18370.0 7203.0 46370.0
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5.2.3 Communications Margins Using the Strawman Instruments with Ground Stations

Support of most of the strawman instruments was discussed in Section 5.1.4. Signal

margins for those instruments would all be more generous using a ground station, but contact

times could not be scheduled with the same flexibility as they could with TDRSS. This section

discusses the strawman instruments that are listed with apogees significantly exceeding

12,000 km.

QUASAT, with a data rate of 128 Mbps, is listed with the others, but that data rate cannot

be supported by an S-Band system, nor does an instrument generating that data rate 100% of the

time make a logical instrument for a "low cost" program.

Table 5.2.3-1 lists the real-time data rate for each of the instruments, except that SYNOP

has been changed to 40 kbps since the 40 bps rate listed in the input material appeared to be a

mistake. (If it really should be 40 bps, signal margins would be significantly better than those

listed.) Real-time data could be transmitted for IMAGE and SYNOP using the 5 watt transmitter

and a 19 dB antenna throughout the orbits. From reading the proposals for both IMAGE and

SYNOP, it appeared that both were designed for real-time operations. SYNOP in particular will

perform IUE type operations. A shaped omni antenna would support this and would be more

useful to IUE type operations. For IMAGE a lower gain less directional antenna might be

appropriate as well. Table 5.2.3-2 lists each instrument with the enhanced design playback rate of

1,250 kbps. The design would produce a positive signal margin for both IMAGE and SYNOP.

5.3 OPERATIONAL SCENARIOS USING THE SPACE NETWORK, GROUND

STATIONS, OR A COMBINATION OF BOTH

A spacecraft using a high gain antenna must be adequately stabilized to allow pointing the

antenna at either a TDRS or the supporting ground station. As a backup, the spacecraft should
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havean omnidirectional antenna which will support a limited rate of both forward and return data

links in order to recover spacecraft stabilization and resume use of the high gain antenna.

The EES baseline design incorporates operation via TDRSS for return of low rate real-time

data and low rate forward link. High rate dump would be accomplished via a supporting ground

station. The link margins would support such an operation, and the operational scenarios

employed would be very similar to the COBE operation. It should be noted, though, that the

COBE data rates are lower than proposed for the straw'man instruments. This scenario becomes

more difficult to implement as the data rates increase.

Communication via TDRSS permits a more flexible scheduli.ng of contact times for support

of real-time operations, but data rates via TDRSS for the EES baseline design would be too low to

allow real-time interaction with the spacecraft. The EES enhanced design could be employed for

such an operation. However, using TDRSS for real-time operations would require either very

limited scheduling flexibility (many schedule requests would be rejected) or that the actual time of

the real-time operation can be shifted to agree with the TDRSS schedule.

Operational scenarios for support of a Molniya orbit have been considered only

superficially, as the plans for use of this orbit had not been fully developed at the time of this

report. Support of spacecraft in elliptical orbits having an apogee of less than 12,000 km should

not be significantly different from support of other LEO spacecraft.

In summary, the EES designs appear to provide reasonable flexibility in supporting various

instruments. The specific operational scenarios to be employed can be examined when more

specific candidate instruments are selected, as the operational scenario should,be tailored to the

science operations req_
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Table 5.2.3-I. Ground Station Return Link Margins, Strawman Insu'uments (Real-Tkm¢)

EES LINK CALCULATION
Direct to Ground, not via TDRSS

SPACECRAFT RETURN LINK

Data Rate (kbps)
Carrier Frequency(MHz)
Xmitter Power (watts)
Xmitter Power (dBm)
Modulation Loss (dB)
CableJDiptexer Loss (dB)
Xmit Ant Gain (dB)
EIRP (dBm)

TRANSMISSION MEDIUM
Minimum Range (kin)
Horizon Mask Range (km)
Atmospheric Atten (dB)
Rain Atten (dB)
User Pointing Loss (dB)
User PolarizationLoss (dB)
Overhead Path Loss (dB)
Horiz Mask Path Loss (dB)

USER-GN D SYST CHARACTERISTICS
Gnd Ant Diameter (ft)
Gnd Ant Gain (dB)
Overhead Rcvd Pwr (dBm)
Horiz Mask Rcvd Pwr ((:iBm)
System Noise Temp (K)
System C_.VT(dB/K)
Ovemead Channel SNR (Eb/No)
Hortz Mask Channel SNR (Eb/No)
Req'd SNR (Eb/No)
User S/C Degradation (dB)
OverheadSign=Uarg .(cB)
HortzMalk SignalMargin(clB)

SPACECRAFT ORBIT PARAMETERS

PeWee(kin)
Apogee (kin)
Horizon Mask (deg)
Minimum Range (kin)
Maximum Range (kin)

EarthRad_s at35 Lat

Re + Perigee

IMAGE QUASAT SYNOP
Real-Time Data Rates

90.0 128000.0 40.0
2287.5 2287.5 2287.5

5.0 5.0 5.0
37.0 37.0 37.0

0.0 0.0 0.0
-3.0 -3.0 -3.0

19,0 19.0 19.0
53,0 53.0 53.0

19200.0 18900.0 35871.0
68983.7 34272.0 40666.4

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

0.0 0.0 0.0

-185,3 -185.2 -190,7
-196.4 -190.3 -191.8

30 30 30
44.1 44.1 44,1

-88.2 -88.0 -93.6
-99.3 -93.2 -94.7
150.0 150.0 150.0
22.4 22.4 22.4
39.1 7.7 37.2
28.0 2.6 36.1

9.6 9.6 9.6

-3.0 -3.0 -3.0
26.5 4.9 24.6
15.4 -10.0 23.5

19200.0 18900.0 35871.0
64000.0 29560.0 35871.0

10.0 10.0 10.0
19200.0 18900.0 35871.0
68983,7 3427'2,0 40666.4

6370.0 6370.0 6370,0
70370.0 35930.0 42241,0
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Table 5.2.3-2. Ground Station Return Link Margins, Strawman Instruments (Data-Dump)

EES LINK CALCULATION
Direct to Ground, not via TDRSS

SPACECRAFT RETURN LINK

Data Rate (kbps)
Carrier Frequency (MHz)
Xmtter Power (warts)
Xmitter Power (dBm)
Modulation Loss (dB)
CablelDiplexer Loss ((:113)
Xrnit Ant Gain (d8)
EIRP (dBm)

TRANSMISSION MEDIUM
Minimum Range (kin)
Horizon Mask Range (kin)

Atmospheric Atten (dB)
Rain Atten (riB)
User Pointing Loss (dB)
User PolarizationLoss (dB)

Overhead Path Loss (dB)
Hortz Mask Path Loss (dB)

USER-GND SYST CHARACTERISTICS
Gnd Ant Diameter (11)
Grid AntGain (cl8)
Overhead Rcvd Pwr (dBm)
Horiz Mask Rcvd Pwr ((:IBm)
System Noise Terr_ (K)
System G/T (dB/K)
Overhead Channel SNR (EbtNo)
Honz Mask Channel SNR (Eb/t_)

Req'd SNR (B:VNo)
User S_3 DegredatJon(dB)
Ovemead SignalMa_. (dB)

Hortz Ma=k Sigr_ Margin (riB)

SPACECRAFT ORBIT pARAMETERS

Perigee (krn)
Apogee(krn)
Horizon Mask (deg)
Minimum Range (kin)
Maximum Range (kin)

Earth Radius at 35 Lat

Re + Perigee

IMAGE QUASAT SYNOP
Data-Dump Data Rates
1250.0 128004.0 1250.0
2287.5 2287.5 2287.5

5.0 5.0 5.0
37.0 37,0 37.0

0.0 0.0 0,0
-3.0 -3.0 -3,0
19.0 19.0 19.0
53.0 53.0 53.0

19200,0 18900.0 35871.0
68983.7 34272.0 40666.4

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

-185.3 -185.2 -190.7
-196.4 -190.3 -191.8

30 30 30
44.1 44.1 44.1

-88.2 -88.0 -93.6
-99.3 -93.2 -94.7
150,0 150.0 150.0
22.4 22.4 22.4
27.7 7.7 22.3
16.6 2.6 21.2
9.6 9.6 9.6

-3.0 -3.0 -3.0
15.1 -4.9 9.7

4.0 -10.0 8.6

19200.0 18900.0 35871.0
64000.0 29560.0 35871.0

10.0 10.0 10.0

19200.0 18900.0 35871.0
68983.7 34272.0 40666.4

6370.0 6370.0 6370.0
70370.0 35930.0 42241.0
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6.0 ALTERNATIVE COMMUNICATION APPROACHES

Section 4 demonstrated that EES could be properly supported by either the SN or

the ground stations, with the exception that the ground stations, as presently planned, will

be unable to cover spacecraft in low inclination orbits. This section examines the

availability of other non-NASA resources to deal with this problem and also to enhance

coverage of polar orbiters. In addition, transportable ground stations, a dedicated

equatorial station for the EES, and data collection and processing at the Principal

Investigator's facility are considered.

6.1 USE OF OTHER GROUND STATIONS

NASA does not presently plan to operate any ground stations in high latitudes. As

a result, NASA may have difficulty providing frequent contacts with polar orbiters. For

example, data collection from the AEROS instrument may be needed at least every 6 hours

to permit near-real-time changes in science operations, including related aircraft operations.

If NASA is obliged to provide this level of service and is unable to provide the needed

resources, the use of non-NASA ground stations will be necessary. The non-NASA

ground stations considered by this study are not fully compatible with NASA interface

standards and are likely to require upgrades in order to satisfy EES requirements.

6.1.1 Use of US Resources

NASA operates a Networks Test and Training Facility (NTTF) at GSFC which has

a 9 meter antenna with a complete ground system that can support S-Band. They have

supported operations in the past and could conceivably do it again, but their charter is test

bed support only and any operations would have to be negotiated with code 530.

Currendy, the N'FI'F has two vacant pads on which antennas could be placed. One of the

advantages of using N'TTF is the ease of routing the data to the processing facility at GSFC

[Ref. 9].
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NASA's White SandsGround Terminal (WSGT) is currently building a second

TDRSS receiving station and would be a good site for a ground station based on the fact

that staff'mg and operations are already there. However, there is the possibility that the S-

Band would interfere with normal TDRSS communications.

The US Air Force operates a network of tracking stations that could provide

coverage for EES. Each of these stations has the potential to provide needed coverage, but

experience has shown that the stations are busy conducting USAF/DOD operations and

may not be available to support EES. These stations are not presently fully compatible with

NASA communications standards, but the Air Force may be receptive to the idea of

achieving compatibility. NASA presently uses the Air Force network to provide Shuttle

support and has also provided launch support for the Geostationary Environmental Satellite

(GOES) project from the Seychelle Islands station.

It is worth noting the USAF stations at Ascension Island and Diego Garcia are

separated by approximately 90 degrees of longitude. This geometry is potentially useful in

the AEROS case, as two stations separated by 90 degrees will be able to communicam with

a polar orbiter at approximately 6-hour intervals.

The National Oceanic and Atmospheric Administration (NOAA) operates tracking

stations near Fairbanks, Alaska and Wallops Island, Virginia. The Fairbanks station is

well located to collect data from polar orbiters and should require minimal upgrades to

provide compatibility with NASA S-Band standards. NOAA uses the Fairbanks and

Wallops stations to collect data from its own polar orbiters, and the same approach

presumably would be satisfactory for NASA. NOAA also has communication satellite

capabilities that could conceivably be used to transport EES data.

6.1.2 Foreign Resources

High latitude temtories in the Western Hemisphere could be used as a base for EES

support for polar orbiters.

The European Space Agency (ESA) operates a network of stations around the

world. Each of these stations has S-Band capabilities that are nearly compatible with

NASA standards. However existing data communications resources are limited in some
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cases.Theuseof ESAstationswouldprobablybe lessexpensivethanthecreationanduse
of newNASA facilities.

6.2 TRANSPORTABLE GROUND STATION

The Wallops Flight Facility is developing two advanced transportable ground

stations (TGS) which are intended to provide S-Band tracking, telemetry, and command

(T'I'&C) capabilities in a variety of situations, including the following:

• Communication with sounding rockets during ascent

• Communication with spacecraft in Earth orbit

• Combined TT&C/Science operations at an investigator's facility

• Stand-in for 9 meter antenna during depot level maintenance

Ranging is not a capability of the TGS. It was omitted to keep cost and complexity

at a minimum.

The transportable nature of these stations permits them to be relocated from site to

site as needs dictate. Figure 6.2-1 provides a system-level block diagram of a TGS.
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When prepared for shipping, each TGS is packagedin 2 standard shipping
containers(approximately8 X 8 X 20 feet and8X 8 X 40 feet) and a 40 foot trailer. The

containers house antenna components, and the trailer houses electronic instrumentation. At

the operating location a team of 3 technicians performs assembly, checkout, and calibration

in a nominal 2 week period. Facility requirements include a concrete pad for the antenna

and electric service (208 volts 3-phase, 100 amps per leg). During operations a team of two

(one technician and one computer operator) wiU probably be needed for operations support

and maintenance. However, the highly automated design of the TGS may permit

unattended operation should that be required.

6.2.1 RF System Functionality and Performance

The planned functionality and performance of the TGS RF system is summarized in

Table 6.2-1.

Table 6.2-1. RF System Capabilities

Funcdon

Antenna

Receiving

Transmitting

Tracking

Ephemeris

Features and Performance

8 meter reflector, feed at prime focus, anti-backlash electric drive,
azimuth-over-elevation pedestal on 18 foot riser, maximum slew rate 20
degrees/sec; maximum acceleration 20 degrees/sec/sec; autotrack or

computer control of pedestal angles; optimizing algorithm for overhead
pass geometry; operational to -8 degrees elevation

GIT > 21 dB/K @ 60 degrees elevation polarization diversity (LCP and
RCP); selectable frequency band (2200-2300 MI-Iz or 2300-2400 MHz)

EIRP > +93 dBm; selectable polarization (LCP or RCP); selectable
frequency (2025-2120 MHz)

Angle tracking only; Accuracy 0.05 degrees RMS per axis, 3 sigma
Output format - Minimum Delay Data Format

I_V or NORAD
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6.2.2 DataSystem Functionality and Performance

TGS data handling is compatible with CCSDS recommendations and includes

provision for command management, command stream generation, downlink stream

synchronization, virtual channel extraction and display, and tracking data formatting. A

data system operator plans and schedules near-term operations, then sets up TGS hardware

and software systems to automatically perform a sequence of spacecraft contacts over a

period which may extend for several days. Spacecraft view periods and antenna steering

angles are forecast using target vectors from NASA or North American Defence (NORAD),

proven propagation algorithms, and a 5th harmonic model of the Earth's gravity field.

During operations the data system uplinks preplanned command sets and processes

tracking, telemetry, and science data. Magnetic disk and/or magneto-optical disk/tape are

used for data storage. External data communications are supported using NASCOM

protocols at data rates up to 1.544 Mbps.

The data system continuously monitors and controls all TGS systems. Monitor and

control modes include alignment, calibration, self-test, and operations. The system uses a

boresight source and astronomical targets for automatic test and calibration prior to tracking

operations. Performance and data quality checks are performed concurrently with

operations.

A "disciplined" rubidium frequency standard provides reference signals with short-

term stability on the order of 1E-12. Global Positioning System (GPS) equipment uses the

GPS Coarse/Acquisition Code to provide timing signals and determines the operating

location of the TGS.

6.3 ALLOCATION OF FUNCTIONS

Table 6.3-1 shows the primary mission operations and data handling functions that

must be performed in order to properly support space missions. A portion of these

functions has traditionally been allocated to the ground stations, and the remainder have

been the responsibility of central data processing facilities. This section discusses some

non-traditional allocation of functions that could be advantageous for EES missions.
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Table 6.3-I. GroundMissionOperationsandDataHandlingActivities

DataType

Sciencedata
processing

Engineering
telemetry
data

Command

processing

Tracking

RF
Communica-

tions

Receive
serial data

Receive
serial data

Transmit
serial
commands

Measu/_

position,
velocity

Interface

Processing

Construct
data set

I_comfnun =

tate and

display data

Build
command
load

Update
measurement
data base

Data

Analysis

Analyze data
set

Analyze data
off-line and

perform
trend

analysis

Select
command

sequence

Update
ephemeris

Operations
Control

Develop
science
command

requirements

Monitor
health and

safety

Integl-ate
command

requirements

Develop
tracking
command

requi_ments

Data Storage

Archive data
Sets

Archive
critical

engineering
data

Archive
command
history

Archive

ephemeris
data

Performing certain scientific data acquisition and data processing at an

investigator's facility offers important advantages for missions, which require prompt

access to their data, for example, a camera planned to photograph a transient event such as

a comet, which may fade from view in a few days. The comet camera must have real-dine

access to its data stream, so that a rapid assessment of data quality can be made, and

exposure or _g techniques can be ref'med quickly.
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6.3.1 PossibleConfigurations

Two configurationswereconsideredto clarify theprimary trade-offsinvolved in

performing the functions containedin Table 6.3-1. When an actual systemdesign is

completedandapproved,it maywell useanintermediateapproachbetweentheextremes
consideredhere.

A direct interfaceconfigurationwould bedesignedto provide investigatorswith

accessto andcontrol over theuplink or downlink. This couldbeaccomplishedeither by

locatinga transportablegroundstationat theinvestigator'sfacility or by usinglongdistance
ground station at the investigator's facility or by using long distance data lines or

commercial communication satellites to link his facility to remote ground stations.

Spacecraft in moderate inclination orbits may pass near the investigator's facility,

depending on its latitude, and would permit direct data acquisition by the user. Spacecraft

in polar orbit will always pass over the facility, regardless of its location.

If NASA adopts a uniform data acquisition interface for the user, that interface must

clearly provide remote data acquisition and the use of long distance data communication

lines. The current planning of the EES program, however, does not seem to necessitate a

uniform approach. In the absence of such a requirement, it appears reasonable to consider

the benefits of user ground stations.

6.3.2 Acquisition and Processing of Science Data

Science data acquisition could be accomplished using an inexpensive ground station

limited to reception. Such a ground station would cost approximately $0.6 million

(excluding level-0 proc_essing) to build [Ref. 10], could be designed for unattended

operation, and would provide an investigator with direct access to his data. The

investigator would be the sole recipient of the downlink data and would necessarily be

responsible for distributing, processing, and archiving the entire mission data set. The

investigator would submit science command requests to a NASA control center.

This approach would concentrate the science effort in a single location, minimize

the use of data lines, and probably be cost-effective. However, if the spacecraft downlink

data contains multiplexed science and engineering data, as seems likely, the investigator
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will either have to assume the responsibility for analyzing the engineering data or

forwarding it to the responsible party, presumably a NASA control center. Forwarding the

data is perfectly feasible and could be accomplished routinely be mailing tapes of

accumulated engineering data. If immediate exan_nation of the data were needed, selected

portions of the telemetry data could be transferred to analysts over data lines. In

anticipation of this situation, the investigator could be provided with software utilities for

extracting and _.nsmitting portions of the stored telemetry data.

6.3.3 Acquisition and Processing of all Downiink Data

Another functional allocation would assign the experimenter all acquisition and

processing responsibilities. This would mean that the success or failure of the mission

would be under the complete control of the investigator and his staff.

Ground equipment to perform these functions would necessarily be much more

complex than in the previous example. The cost of data acquisition systems would be from

$2 million to $5 million, the range primarily due to the uncertainty of using existing ground

station resources [Ref. 10]. The cost of data processing systems is even more uncertain,

but if the same system could be used for instrument development, launch support, and

mission operations, this approach might be quite cost effective.

It seems likely that NASA will retain an interest in the performance of the spacecraft

bus, and that the investigator will be required to furnish engineering telemetry data to

NASA engineers.

During the Small Payloads workshop in February, 1987, several academic

participants expressed a need for regular space science operations with short turnaround

times from (ml)erin_nt conception to science data collection. The pardcipants indicated that

sensor data is needed for the advancement of science, and that space science activities are

needed to allow the development of the next generation of space scientists. This functional

allocation would clearly provide an investigator with an exceptional opportunity to produce

valuable science insights, and it would also allow substantial graduate student involvement.

The investigator's team would probably have less mission management and

operations experience than NASA's professional staff, so this approach implies an

increased risk of mission degradation or failure as a result of errors. These risks could be
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greatly reducedby furnishing a small numberof mission managementand operations
professionalsto the investigator to train his team and to oversee their initial efforts.

Because the potential science benefits are substantial, this approach bears further

examination.

The coverage analysis of Section 3.3.2 suggests an opportunity to adopt a unified

approach to EES communications. Since a ground station located at the equator provides

coverage for all classes of low orbits, it appears likely that such a station could satisfy the

majority of EES requirements as they are now understood.

Such a station could be provided by retaining the Ascension Island station. The

station might require substantial renovation, as overhauls and upgrades have been omitted

because of the planned closure. This need would drive costs upward. Further, the existing

Ascension Island equipment is designed for substantial human involvement in operations.

If communication with an EES is performed at an equatorial location, it will be

necessary to provide a link to related data processing facilities at GSFC. It may be possible

to use the TDRSS facilities in an unconventional way for this purpose. The TDRSS C-

Band antenna will be pointed at Europe and would be unable to link to an equatorial

location. The S-Band antenna, however, might be used to echo EES data from a ground

station. This approach appears to be technically feasible, but it might re.quire a policy

determination.

This approach suggests the possibility of extending the capabilities of the SN by

using ground facilities. Figure 6.3-I shows the end-to-end data flow that could be

provided. Communication between NASA data processing facilitiesand the spacecraft

could take place in real time, thus benefitingtelemetry and command operations and

permittinga form of tclescience.Bulk sciencedatacould alsobe accumulated attheground

stationand spooled through the TDRSS MA or SA systems when available.Similarjoint

use of space and ground systems ismade when the MerrittIslandRelay systems are used,

providinga precedentforthisapproach
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SECTION 7 - CONCLUSIONS

The design choices for the EES space segment communications and data handling

subsystems heavily depend on the the capabilities of available space-to-ground communications

systems, the types of orbits, and the characteristics of candidate instrument payloads. The

following figures summarize the results of communications analysis for various classes of orbits

and the selected instrument payloads, based on the characteristics of baseline and enhanced

performance spacecraft designs.

Figures 7 - 1 through 7 - 3 contain graphs of data rate (as logarithm of bps) versus slant

range (in kin). The SSA and ground equipment bandwidth limits and the signal to noise ratio

limits for the baseline (Figures 7-2 and 7-3) or enhanced versions (Figure 7-1) of the EES

communications design [Ref. 2] provide the upper boundaries of the EES design. Plotted on these

are the transmission data rates (as defined in Appendix D) required to support the individual

strawman experiments at the maximum slant range to a TDRS or ground station (as defined in

Appendix B). Feasibility of EES support for a specific strawman payload is shown when the plot

of transmission data rate vs maximum slant range falls below the boundaries. Three graphs were

developed to demonstrate the conclusions for the following cases: a) LEO via TDRSS, b) LEO via

Wallops, and c) high Earth orbit (FIEO) via Wallops. For this analysis a LEO has been def'med as

any orbit where the spacecraft is at an altitude less than 12,000 km for the majority of the time.

The HEO has been defined as any orbit where the spacecraft is at an altitude greater than 12,000

km for the majority of the time.

Figure 7 - 1 shows the rate requirements versus rate limits for LEO spacecraft via TDRSS.

The solid horizontal line shows the SSA data rate limit of 6 Mbps. The signal to noise ratio limit

represents the enhanced EES communications design of the EES Study Team [Ref. 2]. Range/rate

estimates for the strawman experiments in LEO are plotted as ,. All but three of the strawman

experiments fall below the SSA bandwidth limit and enhanced design signal to noise Line. This

indicates that the enhanced design could support all but three of the LEO strawman experiments.

One of these three experiments, HEASI, falls below the SSA bandwidth limit but slightly above

the signal to noise ratio limit for the enhanced design. Increasing the contact time could lower the

required data rate enough to bring it within the limits of the enhanced design. The two remaining

experiments can not be supported by either of the EES designs. The required data rate for these

two experiments, Microphysics Explorer and Astro./Atmos. Spectroscopic Explorer, must be

lowered before the EES can support them.
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Figure 7 - 1. Ram Requirements versus Rate Limits for LEO Spacecraft via TDRSS
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Figure 7 - 2 shows the rate requirements versus rate limits for LEO spacecraft via Wallops.

The solid horizontal line shows the Wallops data rate limit of 5 Mbps. The signal to noise ratio

limit represents the baseline performance EES communications design [Ref. 10]. Range/rate

estimates for the strawman experiments in LEO are plotted as ,. Seven of the strawman

experiments lie above the Wallops bandwidth limit because of the short contact _ime between a

LEO and Wallops as discussed in section 3.3.3. Figure 7 - 1 shows that five of these seven

experiments could be supported via TDRSS. The fifteen remaining su'awman experiments could

be supported by the baseline configuration via Wallops, but with some reservations as follows.

• Wallops presently provides throughput operations in support of COBE at 655 kbps and is

capable of supporting rates up to 1.5 Mbps with only minor modifications. For rates above

1.5 Mbps (61.7 on the 10 log Data Rate Scale), upgrades will be required for Wallops

communications and data handling equipment. For rates above 5 Mbps (67 on the I0 log

Data Rate Scale), upgrades will also be required for Wallops RF equipment.

• ALM, ARTBE, and Multiprobe Explorer Mission arc eUiprical polar orbits and therefore it is

recommended that support from the DSN at Canberra Australia be arranged in addition to

WaLlops support, as discussed in section 3.3.2, for these and similar type of missions.

• AEROS and EMAO have elliptical polar orbits that will decay to 600 km and 150 km orbits

respectively after one year. The AEROS data rate can be supported by Wallops at 600 kin,

but the EMAO data rate cannot be supported at 150 kin. Therefore it is recommended that

TDRSS support be considered for missions similar to EMAO.

One more recommendation for the enhanced design for LEOs comes from discussion of

Table 5.2.2- I in section 5.2.2. It is recommended that a higher power transmitter with a five watt

u"ansmitter backup be used in the LEOs with orbits at 12,000 ian and playback rates of 1250 kbps.

This would allow more room for failure of a component, since both transmitter and antenna would

have to fail for the link margin to be negative during contingency playback direct to ground.
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Figure7 - 2. RateRequirementsversusRateLimits for LEO SpacecraftviaWallops
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Figure7 - 3 showstheraterequirementsversusratelimits for HEO spacecraftviaWallops.
Thesolid horizontalline showstheWallopsdatarate limit of 5 Mbps. Thesignal to noiseratio

limit representsthebaselinedEEScommunicationsdesign[Ref. 10] for GEO orbits. Strawman

experiments in FIEO are plotted as *. Of the three strawman experiments two could be supported

via Wallops. QUASAT has a data rate so high that it would require K-Band support which is

beyond the EES budget. Also, as noted in section 5.2.3, some HEO missions like SYNOP will

need to operate in real-time and have the ability to point anywhere in the celestial sphere. The

baseline and enhanced performance GEO EES design will not adequately support this type of

operation because of antenna pointing constraints. It is recommended that the baseline design

contain two shaped omni antennas and that the enhanced design contain the options of gimballed or

timed 19 dB antennas.

EES missions will be flown during the last years of TDRS operations and the initial years

of ATDRS operations. EES missions active during the latter period could make use of service

enhancements offered by ATDRSS, including the following:

• The SMA service will be enhanced by increasing forward link power 3 dB and increasing

return link sensitivity 9 dB, permitting use of higher SMA data rates for noise-limited links.

• All SA services will be enhanced by increasing the SA antenna field of view, permitting

support of user spacecraft at higher altitudes, including geocentric altitude.

Since three of the strawman payload set wish to operate at altitudes outside the TDRSS field of

view but within the ATDRSS field of view, an ATDRSS scenario was examined for this class of

missions. The strawman payloads all projected large data volumes, implying long SSA contact

times. Substantial commitments of SSA services are typically reserved for high priority projects

and may or may not be made available to the EES Program. In addition, an ATDRSS scenario is at

a disadvantage compared to.a ground scenario, since a ground antenna typically has a higher gain

and may be closer to the user spacecraft. These considerations suggested that high altitude EES

missions should plan to communicate directly with the ground, rather than through ATDRSS.
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Figure7- 3. RateRequirementsversusRateLimits for HEOSpacecraftviaWallops
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APPENDIXA - CONTACTTIME

Code 554.0 was provided with orbit parameters for 16 of the strawman instruments

so that they could produce accurate view periods with ground stations and TDRSS. These

were used to provide accurate contact time values for the link analysis. These 16 were used

out of the 25 strawman instruments because their orbit parameters represented the entire

group. Two of the experiments, ACE and LUSTER, have since been dropped from the

strawman since their weight and desired orbit altitude were not feasible for a Delta launch.

The contact times produced by Code 554.0 are given in the following Tables. For all the

tables in this appendix, view periods with a ground station that were less than five minutes

were omitted from the tables as not being useful for data playback. Likewise, view periods

that were split by the horizon mask were omitted if none of the parts was longer than five

minutes. If a part of the view period was longer than five minutes than that part was used

as the view period, not the sum of the parts split by the horizon mask.

The tables are arranged into groups as follows:

• Tables A-1 through A-12 provide the results of six strawman instruments with

elliptical orbits. Four of the instrument orbits (AEROS,ARTBE, Microphysics

Explorer, and Multiprobe Explorer) were studied to see their view times with

TDRS1, TDRS2, Wallops (WPSA), Goldstone (DS16), Fairbanks Alaska

(ULAE), Canberra Australia (DS46), and Madrid Spain (DS66). A set of view

times was derived for the cases when the spacecraft apogee occured over the

Indian Ocean and when perigee occured over the Indian Ocean. These two cases

should have provided the minimum view times with a TDRS. Two of the

instrument orbits (AIM and EMAO) were studied to see their view times with

TDRS 1, TDRS2, and Wallops when the spacecraft apogee occured over Wallops

and when perigee occured over Wallops. These two cases should have provided

the minimum view times with Wallops which they did during one of their view

periods of the day. However, 12 hours later perigee was no longer over WPSA

and the view periods were longer.

• Tables A-13 through A-15 provide the results of three strawman instruments with

28.5 degree LEOs at 500 ks, 600 kin, and 700 kin.
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• TableA-16 providestheresultsfor a strawman instrument that requests a 500 km

circular LEO at a 57 degree inclination. Only the view times with TDRSI,

TDRS2, and Wallops were studied.

• Tables A- 17 and A- 18 provide the results of two su'awman instruments with polar

LEOs at 2150 km and 500 km. The average number of contacts per day was

added for convenience. Note that the orbit inclination is dependent on orbit

altitude.

• Tables A-19 through A-23 provide the results of five strawman instruments with

elliptical polar orbits, the 'e' stands for eccentricity of the orbit. The average

number of contacts per day was added for convenience.
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TableA- I. AEROS,ApogeeOvertheIndianOcean

Event#

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15.
16
17
18
19
20

Average

Satellite view time (in minutes) at the given stations

TDRS 1

90.00

258.00

70.00

67.00

74.00

255.00

82.00

76.00
76.00
78.00

357.00

69.00

67.00

256.00

80.00

75.00

75.00

72.50

120.97

TDRS2
98.501

79.00

75.00J

75.00

79.00

258.00

78.00
69.00

68.00

82.00

263.00

79.00

76.00
76.00

80.00

256.00
75.00

68.00

69.00

238.50

112.10

Wallops
WPSA

21.00

5.00

12.47

19.12

24.46

15.44

5.92

Goldstone

DS 16

22.15

23.90

8.98

11.05

10.49

23.10

23.43

12.34

20.09

24.60

16.04

7.84

11.48

5.48

6.62

14.05

Alaska

ULAE

12.84

16.44

15.27

16.34

11.19

8.80

10.73

10.79
8.81

13.41

16.42

15.60
15.94!

10.33

9.16
10.52

10.99

8.21

6.85

12.03

Canberra
DS 46

19.27

25.22

10.00

13.05

20.72_

25.04

8.11

12.49i

16.74

Madrid

DS 66

9.47

7.05

20.35

20.48

9.92

20.86

19.57

15.39

Period = 111.6 Minutes Inclination = 90 degrees

Above table represent events during a two day period.



TableA-2. AEROS,PerigeeOvertheIndianOcean

Event#

1
2
3
4

5
6

7

8
9

10

11

12

13

14

15
16

17

18

19

20

Average

Satellite view rime (in minutes) at the given stations

TDRS 1

320.50

78.00

75.00

76.00

81.001
255.00

74.00
68.00

69.00

260.00

92.00

78.00

75.00

77.00

83.00

255.00

72.00

67.00

71.00

17.50

112.20

TDRS2

151.5i

71.00

67.00

71.00

255.00
84.00

77.00

75.00
77.00

87.00

256.00

71.00

68.00

72.00

254.00

82.00

76.00

• 75.00

77.00

186.50

111.65

Wallops
WPSA

Goldstone
DS 16

Alaska

ULAE
9.14

23.45

23.43

10.39

11.30
10.84

24.01

22.68
11.39

16.29

12.10

19.50

24.38

18.85

12.21

21.13

24.31,

9.00

17.69

9.22

10.40

10.92

8.09

12.48

15.64i

14.97

16.58

11.83

9.59

10.14

10.84

7.49
5.09

12.95

16.09

15.21

16.38

10.89

11.83

Canberra

DS 46

11.20

10.08

23.59

21.83

6.931

12.00

5.00

7.33

24.48

22.20

14.46

Madrid
DS 66

17.47

21.31

12.95

10.24

18.82

20.99
10.19

14.00

Period = 111.6 minutes Inclination = 90 degrees

Above table represents events during a 2 day period.
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Table A-3. AIM, Perigee over Wallops

Satellite view time (in minutes) at the given stations.

Event #

I
2
3
4
5
6
7
8
9
10
11

Average

TDRS 1
573.00
203 .(30
491.00
577.00
202.00
220.00
275.00

363.00

TDRS2
493.00
176.00
401.00
203 .(90
217.00
282.00
177.00
376.00
203.00

280.89

Wallops
WPSA

6.86
59.25
83.47

7.00
5.37

14.73
86.40
20.64

35.47

Orbit altitude = 300 X 12000 km Inclination = 90 degrees

Above table represents events during a 2 day period.

Table A-,a,. AIM, Apogee over Wallops

Satellite view time (in minutes) at the given stations.

Event #

I
2
3
4
5
6
7
8
9
10
11
12
13
14

Avense

TDRS1
116.130
211.00
489.00
364.00
204.00
208.00
487.00
361.00

305.00

TDRS2
362.00
205.00
206.00
486.00
360.00
208.00
204.00
488.00
203.00

302.44

Wallops
WPSA

95.22
141.62
130.18
41.35
42.,M
3&79
95.71

139.67 I
140.76
44.92
43.48
26.09
81.00
31.00
77.45

Orbit altitude - 300 X 12000 km inclination = 90 degrees

Above table represents events during a 2 dayperiod.
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Table A-5. ARTBE, Apogee Over the Indian Ocean

Event #

1

2

3

4

5

6
7

8

9

10
11

Averase

TDRS1

499.50

228.00

585.00

360.00

233.00

237.00

355.00

356.791

Satellite view time (in minutes) at the given stations

TDRS2

34.4.50

581.00

229.00

584.00

358.00
235.00
236.00

366.79

W_lops
WPSA

58.00

131.96

135.55

8.50

22.04

94.95

142.47

25.00

21.24

71.08

Goldstone

DS 16

22.00

68.95

141.53

50.50

19.58

14.08

18.47

118.55

141.69

66.15

Alaska

ULAE

35.74

38.85

66.66

93.09

97.74

57.00

30.71

46.96

78.28

85.13
86.96

65.19

Canberra

DS 46

64.55

22.61

135.37

131.56

41.39

9.17

22.12

145.47

71.53

Madrid

DS 66
50.'14

127.63

106.25

5.11

16.59

97.59

133.06

19.06

69.43

Period= 4.28 hours IncHnation =90degrees

Abovetablerepresenteventsduring a2 day pefiod.
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TableA-6. ARTBE,PerigeeOvertheIndianOcean

Event#

1
2
3
4
5
6
7
8
9
10
11

Average

TDRS1
499.50
228.00
585.00
360.00
233.00
237.00
355.00

356.79

Satelliteview time(in minutes)atthegivenstations

TDRS2
344.50
581.00
229.00
584.00
358.00
235.00
236.00

366.79

Wallops
WPSA

58.05
131.96
135.55

8.50i
22.04
94.95

142.47
25.00
21.24

71.08

Goldstone
DS 16

22.00
68.95

141.53
50.50
19.58
14.08
18.47

118.55
141.69

66.15

Alaska
ULAE

35.74
38.85
66.66
93.09
97.74
57.00
30.71
46.96
78.28
85.13
86.69
65.17

Canbe=a
DS46

64.55
22.6l

135.37
131.56
41.39
9.17

22.12
145.47

71.53

Madrid
DS 66

50.14
127.63
106.25

5.11
16.59
97.59

133.06
19.06

69.43

Period= 4.28hours Inclination= 90degrees

Above tablerepresenteventsduringa 2 dayperiod.
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Table A-7. EMAO. Perigee over Wallops

Event #

1
2

3
4

5

6

7

8

9

10

11

12

13

14
15

16

17
18

Average

Satellite view time (in minutes) at the given statioru

TDRS2

117.00:

278.00

80.00

85.0(}

202.00

105.00

97.00

95.00

98.00

112.00
276.00

79.00

83.00

203.00

109.00

97.00

97.00

TDRS1

85.00

203.00

104.00
96.00

94.00

98.00i

113.00

276.00

80.00

83.00
202.00

109.00

96.00
95.00

110.00

95.00

275.00

81.00

127.50 130.18

Orbit altitude = 150 X 4000 km Inclination = 90 degrees

Above table represents events durmg a 2 day period.

Wallops
WPSA

10.0C

30.88

27.04
30.24

28.64

25.36

Table A-8. EMAO, Apogee over Wallops

Satellite view time (in minutes) at the given station

Event

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

Average

#

TDRS1

99.00
116.00

276.00

79.00!
84.00_

201.00

106.00
96.00

94.00

98.00

111.00
275.00

80.00

82.00

312.00

97.00

87.00

134.88

TDRS2

200.00

104.00
95.00

95.00

98.00i

115.00

276.00

79.00
84.00

202.00

107.00

97.00

95.00

97.00

110.00
275.00

80.00

82.00

127.28

Wallops
WPSA

35.44

46.6J

42.42

9.6;

19.44

15.35

11.48
38.22

46.00

36.0_
44.08

10.72

6.28

18.95

16.82

36.12

27.10

Orbit altitude = 150 X 4000 _ IncLinAtion = 90 da_

Above table represents events during a 2 day period.
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Table A-9. Microphysics Explorer, Apogee Over the Indian Ocean

Event #

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

Average

TDRS 1

74.00

83.00i

77.00i

67.00

63.00

65.00

73.00

84.00
77.00

72.00

69.00

69.00

71.00

75.00

83.00

75.00

65.00

63.00

66.00

74.00;
83.00

76.00

71.00

69.00

69.00

72.52

Satellite view time (in minutes) at the given stations

TDRS2

76.50

71.00

69.00

69.00

71.00

75.00

83.00
77.00

66.00

63.00

65.00

73.00

83.00

77.00

71.00
69.00

69.00

76.00

83.00i

75.00

66.00

63.00

65.00

75.00

84.00

72.58

Wallops
WPSA

9.95

10.33

6.76

11.88

15.78

18.88

15.96

10.54
8.55

7.67 _

12.64

16.21

19.07

15.64

12.85

iGoldstone

DS 16

19.83

9.68

10.32

9.04

7.59

12.47

18.20
19.86

8.15

10.47

9.00

7.92

13.14

18.57

12.45

Alaska

ULAE

12.28

8.52

7.69

12.82

13.33

11.14
8.29

8.06

12.91

13.31

10.84

Canberra

DS 46

9.76

18.80

17.61[

12.03

7.56

8.37

9.33
15.29

18.83

13.38

11.17

7.56

8.18
8.96

11.92

Madrid
DS 66

8.57

6.42

10.02

17.08

15.26

8.14

6.70

10.39
17.21

14.37

11.42

Period = 1.73 hours Inclination = 57 degrees

Above table represents events during a 2 day period.

A-10



TableA-10. MicrophysicsExplorer,PerigeeOvertheIndianOcean

Event#

1
2
3
4
5
6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Average

TDRSI

83.00

72.00

77.00

70,00

69.00

70.00

75.00
83.00

76.00

66.00

63.00

65.00

74.00

84.00

76.00

71.00

69.00

69.00

71.00

76.00

84.001

74,00 I

65.00

63.00

66.00

72.44

Satellite view time (in minutes) at the given stations

TDRS2
78.00

67.00

63.00

65,00

72.00

84.00
78.00

71.00

69.00

69.00

71.00

75.00

83.03

76.00

66.00

63.00

65.00

74.00

83.00

77.00

71.00

69.00

69.013

71.00

76.00
72.20

Wallops Goldstone Alaska
WPSA DS 16 ULAE

18.99 6.70 9.08 I

20.70 19.81 6.47

13.27 19.05 14.13

7,75 13.38 13,19

8.92 7.78 10.16

9.29 8.67 6.01

8.05 10.27 5.69

19.67 8.06 9.23

20.33 20.09 14.28

13.30 18.60 12.93

7.17 12.91 7.94

9.19 i 7.50

9.29i 8.87

12.76 12.44 9.92

Canberra
DS 46

10.86

9.13

8.61

12,72

18.22

18.87
10.49

8.49

9.09

12.72

18.56

18.70

13.04

Madrid

DS 66

8.82

17.80

14.51

8.85

5.92

7.28

10.24
17.90
12.58

5.05

7.77

10.611

Period = 1.73 hours Inclination = 57 degrees

Above table represents events during a 2 day period.
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TableA-1I. MultiprobeExplorer, Apogee Over the Indian Ocean

Event #

1

2

3

4

5

6

7

8

9

10

11

Average

Satellite view rime (in minutes) at the given stations

TDRS 1

630.00

388.00

254.00

629.00

371.00

257.00

421.50

TDRS2

265.50

252.00

646.00

423.00

252.00

629.001

411.25

Wallops
WPSA

155.10

49.05

15.57

136.43_

161.90

66.25

18.08

59.47
66.20

80.89

Goldstone
DS 16

167.56i

126.02i

15.89

165.63

139.98

6.57

11.89

64.02

87.20

Alaska

ULAE

99.49

104.00

76.65

39.25

34.96

92.02

98.41

84.25

46.51

30.29

80.06

71.44

Canberra

DS 46
19.42

134.27

168.57

14.04

118.56

170.11
18.23

91.89

Madrid

DS66

28.96

6.34

94.00

152.37

53.59

14.49

155.37
63.29

71.05

Period = 4.64 hours Inclination -- 90 degrees

Above table represents events during a 2 day period.
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TableA-12. Mulriprobe Explorer, Perigee Over the Indian Ocean

Event #

Satellite view rime (in minutes) at the given stations

6

7

8
9

10

Average

TDRS 1 TDRS2

543.50 367.00i

253.00 367.00

391.00 261.00

631.00 256.00

252.00 374.00

645.50 628.00

253.00

452.67 358.00

Wallops
WPSA

69.63

160.79

116.53

15.91

60.36

153.38

149.28

11.07

92.12

Goldstone

DS 16

16.81

119.49

167.68

17.91

85.721

166.81

95.74

Alaska

ULAE

32.36
40.07

80.80

100.36J

101.75

37.55

36.80

73.85

105.42

108.96
71.79

Canberra

DS 46

77.72

18.96

170.53

118.15

17.54

168.49

66.46

91.12

Madrid

DS 66
56.71

152.05

57.00

13.20

44.83

146.50

131.36

85.95

Period = 4.64 hours Inclination = 90 degrees

Above table represents events during a 2 day period.

A-13



Table A-I 3. SpEx

Event #

Averacj8

Satellite View Time (in minutes) at the given station_

Wallops
WPSA

8.20

8.48
5.80

8.65

7.78

Goldstone

DS t6
6,12
9,22

9.67
9.08

5.59

7,94

AlasKa
ULAE

0.00

Canberra
DS 46

5.31
8.06

8.32
7.77

7.37

Madrid
DS 66

7.17
6,39

6.39

Period = 1.58 hours Inclination = 28.5 degl Orbit = 500 km

Above table represents events during a 24 hour period.

Table A-14. HEASI

Satellite view time (in minutes) at the given stations

Event # Wallops Goldstone Alaska Canberra Madrid
WPSA OS 16 ULAE DS 46 DS 66

Average

10.60

9.89:
6.50
7.69

10.43
9.02

8.15
t0.57

11.22
9.94
7.13

9.40

6.91
6.90
9.77

9,50
8.51
8.32

8.05

8.65
7.36

8.02

Period = 1.61 hours Inclination = 28.5 degl Orbit = 600 km

Above table represents events during a 24 hour period.

Table A-15. HXSIE

Event #

Average

Satellite view time (in minutes) at the given stations

Wallops Goldstone Alaska
WPSA DS 16 ULAE

11.81 9,601
11.08 11.68

7.32 12.47
10.49 10,94!

11.21 8.22
5.65

10.38 9,761

Canberra
DS 46

7.98
8.18

10.77
10.30

9.31

Madrid

DS 66
9.62
9.71

7.81

9.05

Period = 1.65 hours Inclination = 28.5 degf Orbit • 700 km

Above table represents events during a 24 hour period.
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Table A- 16.Asm_eumology Expiot_

Sat_llite view tune (in mmums) at the given _anona.

Event#

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
2O
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

4O
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56

Views per l_y

TDRSI
62.00

68.00
65.00

59,00
57.00

56.00
58.00

62.00
68.00
65.OO

60.00
57.00
57.00
58.00
60.00
67.0(3
66.0(]
60.00
57.00
56.00
57.0(2
60.00

66.00
67.00

61.00
57.00
56,00
57.00
60.00
66.00
67.00

61.00
57.00
57.00
57.00

60.00
65.00

68.00
61.00
58.00
57.00
56.00
59.00
65.00
68.00

62.001
58.001

56.00
57.O(]
59.00l
64.00'

68.00
63.00
58.0(
56.00
57.00

60.70

14.00

TDRS2
68.00

62.00
57.00

56.00
57.00

60.00
65.0(]

68.0(]
62.00
58.00

57.00
57.00
59.00
64.00
68.00
62,00
58,00
57.00
56.00
59.00
64.00

68.00
63.00
58.00
56.00
57.00
59.00
53.00
63.00

63.00
59.00
57,00
57.00
59.00
63.00

68.00
64.00
59.00
57.00i
56.0(]
58.00
63.00
68.0(
65.00
59.00

57.00
56.00

58.00
61.00
67.00

66.00
59.00
57.00
57.00
58,00

61.00
60.41

14.00

Waflops
WI_A

10.9(]
6.75
7.2(_
9.16
5.84

10.43
9.32

6.54
8.64
8.29

9,70
9.97
5.22
8.89
9.52
5.77
10.77
6.53
6.97

9.75

8.31

5.00

Pertod=l.58 hours Inct/natioe=57 desn_

Above table l_:sem events during • 4 day period.
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Table A-17. SAMEX

Satellite View Time (in minutes) at the given stations

Event #

i

2

3

4

5
6

7

8

9

I0

11

12

13

14

15

16

17

18

Average
Ave # Contact_

Per Day

Wallops
WPSA

26.97

25.20

16.50

17.43

25.04

24.83

17.61

25.96

23.24

26.85

23.20

Goldstone

DS 16

26.35

23.86

26.58

16.67

10.86

22.74

14.40

24.23

26.17

25.64
25.71

16.76

Alaska

ULAE

24.71

20.72

17.80

9.91

19.99

21.58

25.26
25.09

25.24
24.92

25.18

25.15

24.28

20.66

14.95

13.39

20.28

23.43

Canberra

DS 46

25.23

26.89

17.41

12.53

22.03

26.52

26.25

27.22

25.77

15.85

14.65

24.06

Madrid

DS 66

22.39

21.54

14.08

22.76

20.71

19.01

15.72

15.72

23.45

19.59

14.36

22.85

22.98 21.66 21.25 22.03 19.35

6.50 6.00 9.00 6.50 6.50

Period = 2.18 hours Inclination = 106 degress

Above table represents events during a 2 day period.

Altitude - 2150 km
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TableA- 18. Astro./Atmos. Spectroscopic Explorer

Satellite View Time (in minutes) at the given stations

Event #

1

2

3

4

5

6

7

8

9

10

11

12

Averase
Ave # Contact,,

Per Day

Wallops
WPSA

9.66

8.74

8.95

9.64

9.43

9.28

2.50

Goldstone

DS 16

8.95

9.09

9.44

7.94

8.70

9.59

8.95

3.00

Alaska

ULAE

5.20

6.80

6.79

5.67

6.39

6.55

6.45

6.64

5.74

6.35

6.96

6.13

6.31

6.00

Canberra
DS 46

7.44

10.13

8.60

8.37

9.79

8.87

2.50

Madrid
DS 66

5.78
7.54

7.84

7.68

7.21

2.50

Period = 1.58 hours Inclination = 97.5 degress

Above table represents events during a 47 hour period.

Altitude= 500 krn
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Table A-19. Aeros

Event #

1

2

3
4

5
6
7

8

g
10
11

12

13
14
15

16
17
18

19
20
21

22
23

24
25

26
27

28
29

30
32

32
33

34
35

36
37

38
39
40

41
42

43
44

45
46

47
48

MeQ't
Ave # Contacts

Per Day

Satellite view time (in minutes) at the given staUons

Goldstone
DS t6

Wallops
WPSA

8,73
23.72

23.30

12.02
10.86
13.80

12.83

11.62
15.85

22.81
18.01

1829
22.93
15.08
10.61

14,04
14.20

10.96
22.25
21.33

10.77
22.25

21.48

16.42

5,2

12.14
lg.66

24.39

18.86
5.78

13,79
11.80

22.17
8.56

20.59
22.22

10.60
9.20

21.36

13.39
11.12

12.78
12.21
19.08

22.56
10.69
18.77

22.58

t 2.33

15.70

5.4

Alaska

ULAE
10.21

10.03
10,39

5,731
11.28

15.48
15.07

16.71

12.91
6.13
7.72

7.07
8,13

5.79
7.66

8.29
lg.69
18.94
19,77

18.61
18.73

18.13
19.73

18.64
19.76

16,68
17.69;

16.96
18.11

6.04
7,60

8.3

8.09
7.64
6.03

17.11
17.63

17.46
19.201

18.51
20.02

18.30
18.44

18.4;
19,18

16.37
19.92

17.37
14.25

9.6

Canberra
DS 46

11,23
6.73
7.05

12.20
24.62

21.82

20.94
23.16

9.96
10.70

21,72
20.48

14,61
14.66
23.33

10.02
18.87

23,56
11,69

20,46
13.10
12.11

11.77

15.86

1,8

Madrid
OS 66

16.5;
21.4"

13.3
g.1_

11.3;
11.3E

18.45
19.7E

5.73
5.81

lg.3E
18.53

10.11=
8.7_

11.41

6.12

16.3:
20.12

7.95

18.41
19.45

13.79

1,8

Period = 111.6 minutes • = 0.0g Inclination - 90 degrees

Above table represents events during a 4.8 clay period.
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Table A-20. ARTBE

Event #

1

2

3

4

5

6

7

8

g

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37

38

Ave ra_e
Ave # Contacts

Per Day

Satellite view time (in minutes) at the given stations

Wallops

WPSA

133,95

134.10

45.66

23.22

143.22:

108.03

34.89

34.75

28.74

154.45

130.94

115.71

81 .O7

116.55

130.36

136.25

125.59

34.20

29.20

16.64

26.42

119.72

134.49

134.14

123.35

100.08

108.92

125.01

154.42

96.00

12.63

Goldstone

DS16

22.78

142.50

115.20

14.86

14.80

80.00

140.34

30.04

31.40

32.78

128.08

153.30

124.98

105.58

98.01

120.88

139.53

136.09

25,34

15.20

34.6g

34.32

102.75

123.14

143.31

130.60

116.94

93.53

107,51

128.60

Alaska

ULAE

32.73

44.07

88.13

87.60

75.60

47.18

30.91

61.14

94.48;

13.22

12.49i

9.491

11.81

7.71

9.161
135.95

162.27

155.93

134.76

137.17

134.77

144.70

163.30

6.09

8.07

11.98

11.20

13.52

12.00

13.20

137.84

133.20

1 52.24

1 61.47

137.60

137.67

140.06

135.99

Canberra

DS46

Madrid

DS66 ,
126.4;

120.66

1 6.52

18.95

133.20

92.23

27.71

27.62

12.13

18.20

119.22

101.37

68.36

111.35

123.14

123.15

117.04

93.76

91.12

24.31

24.70

27.65

126.07

122.21

1 6.52

15.73

8.58

1 07.28

145.08'

24.09

137.04

1 23.77

1 00.60

1 05.27

1 28.08

147.58

129.54

1 09.66

29.25

27.05

36.32

131.73

155.52

127.94

107.59

95.97

120.60

1 41.03

136.84 114.75

34.00 83.48

34.97 96.67

29.53 118.24

144.49

119,18

89.57

11.79

79.12

10.41

89.54

1 t .78

84.80

11.16

Period = 4.28 hours e = 0.45 Inclination = 90 degress

Above table represents events during a 7.6 day period.
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Table A-21. IMAGE

Satellite view time (in minutes) at the given stations

Event #

1

2

3

4

5

6

Averase
Ave # Contacts

Per Day

Wallops
W'PSA

889.00i
252.001

521.00

612.00

568.5O

1.10

Gotdstone
DS16

1032.001
503.001

224.00

1172.00

Alaska

ULAE

880.00

276.00

1225.00

732.75 793.67

1.10 0.80

Canbe=a

DS46

948.00

640.00

421.001

342.00

587.75

1.10

Madrid

DS66

520.00

286.00

353.00

251.00

637.00

331.00

396.33

1.60

Period = 29.05 hours e = 0.47 Inclination = 90 degrees

Above table represents events during a 3.6 day period.
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Table A-22. QUASAT

Satellite View Time (in minutes) at the given stations

Event # Wallops Goldstone Alaska Canberra Madrid
WPSA DS 16 ULAE DS 46 DS 66

1

2

3

4

5

6

7

8

9
10

11

12

662.70

194.88

147.29

284.62

448.12

755.14

178.08

633.45

317.21

413.42

756.58

337.73

397.85

705.99

399.77

227.57

443.35

180.37

333,66

602,96

447,34

300.43

213.36

802.74

263.58

151.61

111.69

773.29

546.04

794.46

221.43

102.53

288.61

258.14
523.09

313.74

430.77

421.12

373.64

651.88

283.79

255.77

505.05

735.71

310.99
582.17

605.47

Average 423.28 508.89 343.43 385.40 478.27
Ave # Contactsi

Per Day 2.402.00 1.801,40 1.80

Period = 16.13 hours e = 0.22 Inclination = 63 degrees

Above table represents events during a five day period.
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Table A-23. MJcrophysics Explorer

Event #

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32

Avel_

Ave # Conu_s

Per Day

Satellite view time (in minutes) at the given stations

Wallops
WPSA

7.72

12.76

16.32

19.04

15.60

11.01

9.01

8.17

13.48
17.25

19.21

10.74

5.56

9.35

6.05

11.03

7.60

5.69

9.67

19.13

17.09

18.73

18.23

17.18i

21.11

18.13
18.93

16.58

18.74

17.79

Goldstone

DS 16

I0.48

8.96

7.98

13.18

18.60

19.62

6.19

10.46

8.54

8.53

12.86

19.11

19.19
5.49

5.63

10.36

10.56

5.23

5.85

20.29

17.59

17.82

16.84

19.97

16.65

18.55
20.17

12.29

17.80

16.65:

19.95i

15.66

13.66

Alaska

ULAE

Canberra Madrid

DS 46 DS 66

8.10i

12.92

13.30i

9.82

7.95

8.49

13.04

13.24

9.31

7.54

8.35
13.60

19.18
19.99

13.97

18.63

11.02

9.57

13.91

19.55

19.91

18.41

13.66

10.04

13.90
|

2.82 2.781

8.16

8.90

17.27

20.47

13.01

10.071

7.68

8.31

8.69

16.86

18.94
5.79

18.74

17.76

17.021

16.87_

18.31

18.86i

5.83i

7.92

7.82

7.20

7.17

10.30

8.53

6.88

17.23

14.26

7.84

7.69

14.52

17.27

10.38

7.41

7.57

7.29
8.05

5.56

5.51

16.70

5.82

17.413

17.18

15.83

15.03

17.38

16.29

7.41

13.06 12.05 11.80

2.65 2.45 2.40

Period = 1.73 hours e = 0.08 Inclination = 57 degrees

Above table reprents events during a 4 day 22 hours period.
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APPENDIX B: MAXIMUM SLANT RANGE



TO:. Mr. J. Cooley and DATE: June 19, 1990

Mr. M. Saltzberg
PAGE: _1_ of 2

FROM: Dr. L. Roszman

PREPARER: Mr. V. Blaes

SUBJECT: Maximum and ,Minimum Slant Range to 13 Expandable Explorer Satellites

from Five Ground Tracking Stations

SEAS QUICK NOTE NO.: QN 90/22

TASK ASSIGNMENT NO.: 50-404

This Quick Note is in response to a request for the maximum and minimum ranges from 5
ground tracking stations to the Expandable Explorer satellite in 13 different mission orbits.
The given Orbit parameters for the experiments are described in Table 1. The five tracking
stations are: Canberra (DS46), Falrbanks (ULAE), Goldstone (DS16), Madrid (DS66),

and Wallops Island (WPSA). Elevation masks for the tracking antennas are presented in
Tables 2 through 6.

, ABSOLUTE MINq2VlUM AND MAXIMUM SLANT RANGE
FROM GROUND TRACKING STATIONS

The maximum possible slant range from the tracker to the satellite occurs when the satellite
is at apogee, and apogee is above the equator. For this case the slant range, S, is given by:

S = -R * sin (A) + [(R e + Ha) 2- (R * cos(/i,))2] l_

where, R

A =

H a =

Earth radius at the tracker, plus tracker altitude
Equatorial Earth radius
wacker elevation mask angle
satellite apogee altitude

The minimum possible slant range is equal to perigee altitude when perigee is directly
above the tracker. The computed absolute minimum and maximum slant ranges for each
satellite-tracker combination is presented in Tables 7 through 11.

(1)

2. ABSOLUTE MAXIMUM AND MINIMUM RANGE FROM TDRSS TRACKERS

Four of the elliptical orbits are required to be tracked by TDRSS trackers in addition to
ground trackers. There are two geometric constraints on tracking from TDRSS. The
perpendicular distance from TDRSS-to-target line of sight to the Earth must bc neither
greater than 12000 kin, nor less than 100 kin. The longest slant range from TDRSS to
target for a given distance between the TDRSS line of sight to the target and the Earth
occurs when the target is at apogee altitude. It is obtained from the following equation,

where H is the perpendicular distance from the TDRSS to target line of sight, Ha is the
apogee altitude, and Ha > H.

Range = [(6378.14 + Ha) 2 - (6378.14 + I-I)2)]1/'2 + [42241.12 -(6378.14 + H)2] l_ (2)
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SEASQUICK.NOTE NO.: QN 90/20 DATE: June19,1990

TASK ASSIGNMENTNO.: 50-404 PAGE: 2of2

The maximum slant range for a given apogee altitude is obtained when H is minimum, i.e.,
H = 100 krn. Minimum slant range from TDRSS to the target satellite occurs when the

apogee of the target's orbit is directly beneath TDRSS. The computed minimum and
maximum ranges are shown in Table 12 for four target satellites.

3. COMPUTED SLANT RANGES USING THE ACQSCAN PROGRAM

The initial orbital elements for the 13 orbits were not specified. However, all launches
except those for ACE, SPEX, HEASI and HXSIE are known to be from Vandenburg
AFB. The rest will be from Cape Kennedy. The right ascension of the fh-st ascending
node was selected to make the ground track of the f'Lrst orbit pass through the launch site
geodetic coordinates. The satellite mass was known, but the reference area was not,
hence, lifetime duration ephemerides were not computed. Instead, 5 combinations of right
ascension of the ascending node and argument of perigee were employed to generate one to
two days of tracking data using the ACQSCAN program, with drag turned off. Table 13
presents the combinations of right ascension and argument of perigee used for each run. It
should be noted that it was necessary to run each case with two output options, since it is
currently not possible to obtain both slant ranges and event durations in the same
ACQSCAN run. Also, the slant range cannot be computed using ACQSCAN if the size of
the range number is greater than five places to the left of the decimal because then the
output format width provided for is exceeded. This occurred in two cases; for ACE and
LUSTER. The runs show that slant ranges near the maximum possible value occur more
frequently that do ranges close to the absolute minimum. 80 sets of computer output data
are being delivered separately to the ATR and are not included herein. Eight additional nms
were made for the four missions that are to be tracked by TDRSS. Available TDRSS
epemerides, beginning at epoch 971202, were used for these runs and two-body internal

ephemeris generation in ACQSCAN was employed for the target satellite ephemerides, as
before. The node was selected to place either perigee or apogee at the equator, with
longitude equal to 80 degrees. This places these positions in the orbit close to the middle of
the TDRSS zone of exclusion, where a satellite is not visible by either TDRSS. The imt_d
conditions for these runs are presented in Table 14.
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TABLE B-1.

Experiment

ORBIT PARAMETERSFOR13EXPANDABLE EXPLORER
SATELLITEEXPERIMENTS

Perigee Apogee i e Period
(km) fkrn)

IMAGE 19200 64000 90 0.466879 29.05 hrs

,MICROEXPL 350 1500 57 0.078733 103.5 rain

AEROS 400 2000 90 0.091168 111.6 min

ACE 252000 252000 28 0.0 15.13 days

QUASAT 18900 33159.5 63 0.220 21.12 hrs

LUSTER 384000 384000 95 0.0 28.09 days

MULTIPROBE 500 15000 90 0.51316 4.64 hrs

ARTBE 1000 13000 90 0.448493 4.28 hrs

SPEX 500 500 28.5 0.0 94.62 min

ASTRO/ATMOS 500 500 97.5 0.0 94.62 rnin

SAMEX 2150 2150 106.0 0.0 130.62 rain

HEASI 600 600 28.5 0.0 96.69 rain

HXSIE 700 700 28.0 0.0 98.77 rain
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TABLE B-2. ELEVATION MASK FOR WALLOPS ISLAND TRAOCING STATION

TRACKING STATION DATA S 1---STATION FILE

STATION ACRONYM = MPSA
LAT = 37.9Z7 !OEG ÷N)
MASK MAX ELV = 13.Z00 (0EG]

LON = 28_.5ZS |OEG +E ]
HASK AVG ELV = _.5_5 (OEG]

HASKING OATA---TERRAZN HASK

AZIMUTH
0 000

Z5 500
Z8 700
33 ZOO
37 _o0
78 000
85 000
90 0O0
q5 00Q

100 0o0
1_3 ZOO
I_8 000
15Z 300
160 000
163 000
213 600
216 600
Z28.900
230.500
235.500
Z35.900
259.100
Z66.000
270.000
27_.000
281 600
290 000
ZqO I00

Zgl ;00
291 700
310 500
310 900
328 500
335 000
335 500
360 000

ELEVATION
6.000
6 000
2 200
5 000
1 900
0 600
8 900

11 000
8 900
Z lO0
Z 800
I _00
Z.O00
Z.ZO0
1.600
1._00
Z.O00
S._O0
9.700
9.000

_00
6 100

1Z 300
13 000
12 300

800
000

8 000
8 000

600
6 200

10 000
10 000
13 200

6.000
6,000

ALT = -_0.6570 (M I
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TABLE B-3. ELEVATION MASK FOR GOLDSTONE TRACKING STATION

TRACKING STATION 0ATA I Z---STATION FILE

STATION ACRONYM = DS16
LAT = 35.3_Z ( OEG *N )
HASK MAX ELV = i_.700 (DEGI

LON = Z;3.126 10EG *El ALT =
HASK AVG ELV = 5.0_0 (DEG)

MASKING

AZIMUTH
0.000

ZS.000
_7._00
b3.700
76._OO
77.300
80.500
8_.900
90.000
95.100
99.500

102.700
103.700
1Z_ 500
138 800
1_6 000
153 500
16Z 000
179 I00

210 000
231 i00
Z_Z 000
Z51 700
255 500
Z57 300
Z60.500
Z6_.900
Z70,O00
Z75.100
279.500
Z82.700
Z8_.300
297.100
298.700
330.000
360.000

DATA---TERRAIN HASK

ELEVATION
_.Z00
3.700
3.000
3.600
5.000
7.500

il.500
1_.000
1_.700
1_.000
ii.500

7.500
_,300
5,600
3.900
_.900
5.000
_.lO0

_.200
3.600
3.100
3,600
2.600
1.900
7.600

11.500
i_.000
1_.700
1_.000
11.500

7.500
Z.600
3.000
2.300
3.600
4.ZOO

919.2080 [Hi
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TABLE B-4. ELEVATION ,MASK FOR ALASKA TRACKING STATION

TRACKZNG STATZON 0 ATA • 3---ST&TZON FILE

STATZON ACRONYM = ULAE
LAT : b;.977 (OEG +N} LON : Z1Z.;SZ [DEG +E)
HASK MAX ELV = 19.000 [OEG) MASK AVG ELV = 8.759

TA-°-TER

ELEV
1S

• 10
8
8
8
6
7
7
S
S
6
9

10
10

16
16
18
19
18.
16.
16.

1Z.
7.
7.
5.
S.
6.
8.

1Z.
1¢.
15.

HASK_NG DA

AZZMUTH
0.000

10.000
ZO.O00
Z8.OO0
31.000
35.000
_0 000
_7 000
54 000
70 000
_5 000

100 000
130 000
135 000
140 000
I;5 000

16Z 000
16b 000
168 000
176 000
180 000
18_ 000
19Z 000
19_.000
198 000
ZOS 000
Z16 000
ZZO 000
Z35 000
3ZS 000
33O 000
33_ 000
3_5 000
35Z 000
356 000
360 000

RAZN MASK

ATZON
bOO
000
500
500
900
600
000
600
600
000
000
000
000
000
000
000
800
_00
800
500
000
500
800
_00
800
I00
800
¢00
000
000
000
500
000
¢00
100
600

(DEG)
ALT : ZgB.3900 IM)
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TABLE B-5. ELEVATION MASK FOR CANBERRA TRACKING STATION

TR&CKZNG STATION DATA • _---STATION FZLE

STATION ACRONYM = 0S_6
LAT = -35.;05 (DEG +NI
MASK MAX ELV = 15.000 I DEG ]

LON : 1_8.983 (DEG +E )
HASK AVG ELV = S.793 (DEG)

MASKING DATA---TERRAIN MASK

AZIMUTH
O.O00

35.000
50.000
65.000
78._00
8Z._00
85.000
95,000
97.600

106 000
110 000
115 000
130 000
160 000
165 000
170 000
196.000
Z08.000
ZZ3,OO0
234.000
Z_0.000
Z54.000
26Z._00
265.000
275.000
277.600
Z86.000
295.000
300.000
317.000
323.000
324.000
332.000
333.000
356.000
360.000

ELEVATION
Z.500
8.100
8._00
9.900

10.Z00
13.500
15 000
15 000
13 500

6 800
7 600
7 500

000
1 900
2 800
1.900
].700
3.600
2.900
3.900
2.500
5.200

13.500
15.000
15.000
13.500

4.500
3.500
Z.OO0
3.000
1.000
8.000
0.000
1.000
Z.SO0
Z.SO0

ALT = 66_.Z710 (HI
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TABLE B-6. ELEVATIONMASK FORMADRID TRAC"KINGSTATION

TRACKING STATION DATA • S---STATION FILE

STATION ACRONYH = 0566
LAT = _0.430 ( OEG +NI
MASK MAX ELV = 18.000 (DEGJ

LON = 3SS.749 {OEG +El ALT :
HASK AVG ELV = 9._67 (OEG)

MASKING DATA---TE

AZIMUTH
0 000
Z 500

16 700
30 100
3g 000
3g 700
_8 000
65 600
75.800
77.900
80.800
86.700
93.300
98.400

lOZ.lO0
105.200
130.000
167.700
190.800
210.000
Z36.700
Z50.000
ZS_.600
256.700
26Z.000
Z6S 800
Z7_ ZOO
Z78 000
Z81 800
Z85 000
303 500
3ZO 000
3Z8 800
331 bOO
345 000
360 000

RRAIN MASK

ELEVATZ0N
1Z 000
lZ 400
lZ 000
14 000
1_ 000
ii 600
10 000

8 500
7 500

10 000
13 000
15._00
15._00
13._00
10.000
_.000
4.600
6.000
6.000
4.300
7.000
7.500
8.000

10.000
1_.000
15.400
15.400
14.000
11.000

8.000
10.000
14.000
18.000
17.800
14.000
lZ.O00

8Z1.1710 IPII
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TABLE B-7.

Experiment

SLANT RANGE TO SATELLITE AT APOGEE FROM THE
WALLOPS TRACKER; ELEVATION ANGLE - 0, AND M.IN, AVG,
AND MAX FROM THE TERRAIN MASK

Maximum possible range from WPSA, km

Elev = 0 Min Elev Av_ Elev Max Elev

LMAGE

MICRO EXPL

AEROS

ACE

QUASAT

LUSTER

MULTIPROBE

ARTBE

SPEX

ASTRO/ATMOS

SAMEX

HEASI

HXSIE

70089 70023 69586 68650

4635 4569 4158 3404

5442 5376 4961 4178

258300 258233 257795 256849

35369 35302 34868 3394.4

390326 390260 389822 388874

20407 20340 19909 19004

18301 18235 17803 16904

2594 2529 2138 1520

2594 2529 2138 1520

5670 5604 5188 4399

2849 2783 2389 1744

3086 3019 2622 1957

TABLE B-8.

Experiment

SLANT RANGE TO SATELLITE AT APOGEE FROM THE
GOLDSTONE TRACKER; ELEVATION ANGLE - 0, AND MIN,

AVG, AND MAX FROM THE TERRAIN MASK

Maximum possible range from Goldstone, km

Min Elev Av_ Elev Max Elev

I_.AGE

MICRO EXPL

AEROS

ACE

QUASAT

LUSTER

MLrLTIPROBE

ARTBE

SPEX

ASTRO/ATMOS

SAMEX

HEASI

HXSIE

Elev - 0

70089 69878 69531 68491

4632 4425 4105 3289

5439 5232 4908 4057

258300 258088 257740 256687

35369 35158 34813 33788

390326 390115 389767 388712

20406 20196 19854 18853

18300 18090 17749 16754

2588 2385 2088 1434

2588 2385 2088 1434

5667 5460 5135 4276

2843 2639 2337 1653

3080 2876 2571 1862
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TABLE B-9.

Experiment

SLANT RANGETO SATELLITEAT APOGEEFROMTHE
CANBERRATRACKER: ELEVATION ANGLE = 0, AND MIN,

AVG, AND MAX FROM THE TERRAIN MASK

Maximum possible range from Canberra, km
Elev = 0 _ Elev Avg Elev Max Elev

LMAGE

.MICRO EXPL

AEROS

ACE

QUASAT

LUSTER

MULTIPROBE

ARTBE

SPEX

ASTRO/ATMOS

SAMEX

HEASI

H.XSIE

70089 69978 69449 68459

4632 4522 4033 3267

5439 5329 4834 4034

258300 258188 257657 256655

35369 35258 34731 33758

390326 390215 389683 388680

20406 20295 19773 18823

18300 18189 17668 16725

2588 2479 2023 1419

2588 2479 2023 1419

5667 5557 5060 4253

2843 2734 2272 1637

3080 2971 2503 1845

TABLE B-10.

Experiment

SLANT RANGE TO SATELLITE AT APOGEE FROM THE

ALASKA TRACKER; ELEVATION ANGLE = 0, AND MIN, AVG,
AND MAX FROM THE TERRAIN MASK

IMAGE

MICRO EXPL

AEROS

ACE

QUASAT

LUSTER

MULTIPROBE

ARTBE

SPEX

ASTRO/ATMOS

SAMEX

HEASI

HXSIE

Maximum possible range from Alaska, km

Elev -- 0 Min Elev Avg Elev Max Elev

70090 69538 69128 68050

4648 4126 3779 3017

5452 4926 4569 3761

258300 257746 257333 256237

35371 34821 34415 33360

390326 389772 389359 388261

20410 19863 19464 18444

18304 17758 17361 16725

2616 2120 1821 1266

2616 2120 1821 1266

5680 5152 4794 3975

2869 2367 2059 1467

3104 2599 2283 1661
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TABLE B- ii

Experiment

SLANT RANGE TO SATELLITE AT APOGEE FROM THE MADRID
TRACKER; ELEVATION ANGLE = 0, AND M.IN, AVG, AND MAX
FROM THE TERRALN MASK

LMAGE

.MICRO EXPL

AEROS

ACE

QUASAT

LUSTER

Maximum possible range from Madrid, km

Elev = 0 Min Elev Av_ Elev Max Elev

MULTIPROBE

ARTBE

SPEX

ASTRO/ATMOS

SAMEX

HEASI

HXSIE

70089

4634

5441

258300

35369

390326

20407

18301

2593

2593

5669

2847

3084

69646 69049 68148

4211 3704 3067

5015 4493 3818

257856 257254 256338

34927 34337 33455

389882 389280 388362

19967 19386 18533

17862 17283 16438

2186 1748 1286

2186 1748 1286

5242 4718 4033

2437 1986 1493

2672 2210 1690

TABLE B-12.

Sat I.D.

MAX RANGES FROM TDRSS TO TARGET SATELLITES

MICRO EXPL

AEROS

MULTIPROBE

ARTBE

RI. (kin) R2. (kin)

46224.57 .......

47054.30 .......

62114.39 48954.63

60004.64 44178.21

Notes: R1 applies when H = 100 km
R2 applies when H = 12000 km
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TABLE B-13 ORBITAL ELEMENTSUSEDFORACQSCANCOMPUTERRUNS

SAT I.D a e i AscNode Peril.

IMAGE

MICRO EXPL

AEROS

ACE

QUASAT

LUSTER*

MULTIPROBE

ARTBE

SPEX

ASTRO/ATMOS

SAM_X

HEASI

HXSIE

47978.14

7303.14

7678.14

0.466879 90.0 353.031 0, 90, 270
83.031 90, 270

0.078733 57.0 315.493 0, 90, 270
45.493 90, 270

0.091168 90.0 341.297 0, 90, 270
71.297 90, 270

258378.14 0.0 28.0

32407.87 0.22 63.0

14128.14

335.717 0, 90, 270
65.717 90, 270

95.0

0.513160 90.0 340.316 0, 90, 270
70.316 90,270

13378.14 0.448493 90.0 341.231 0, 90, 270
71.231 90, 270

6878.14 0.0 28.5 304.404 0

34.404 0,(MA---90)

6878.14 0.0 97.5 346.980 0

76.980 0,(MA=90)

8528.14 0.0 106.0 353.583 0

83.583 0,(MA---90)

6978.14 0.0 28.5 304.513 0

34.513 0,(M.A--90)

7078.14 0.0 28.0 304.653 0

34.653 0,(MA=90)

TABLE B-14

SAT I.D

MICRO EXPL
AEROS
MULTIPROBE
ARTBE

ORBITAL ELEMENTS USED FOR ACQSCAN COMPUTER RUNS
WITH TDRSS TRACKING

7303.14
7678.14

14128.14
13378.14

0.078733 57.0 163.436 0, 180
0.091168 90.0 164.230 0, 180
0.513160 90.0 185.025 0, 180
0.448493 90.0 182.321 0, 180
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APPENDIXC - LINK CALCULATION

The power received in an antenna communication system is givenby

where,

Pr- Pt Gt L Gr,

Pt = power into transmitter antenna
Pr = power out of receiver antenna

Gt = gain of transmitter antenna
Gr = gain of receiver antenna, and
L = loss factor of space link, including margin.

(C-l)
[Ref. 1 1]

The receiver power per bit must provide an adequate signal compared to the thermal noise:

Eb/No = (Pr/Dp)/kT (C-2)

where,
Eb/No - ratio of bit energy to thermal noise spectral density
Dp = playback data rate
k = Boltzmann's constant = 1.38 x 10 .23 J/degK (Joule per degree Kelvin), and
T = effective receiver temperature.

The Eb/No ratioisrelatedto the data encoding method and the Bit Error Rate (BER). A

typicalchoice iscoherent Phase ShiftKeying (PSK) and a BER of I0-s,which impliesan

Eb/No ratioof 9.6 dB [Ref. 12]. The playback data rate achievable with a specified

transmitter power may then be computed from

Dp = (PtGt Gr L)/(Eb/No)kT = 218.7 dB degK/I EIRP G/'rL (C-3)

where,

EIRP ---Effective Isotropic Radiated Power - Pt Gt, and
G/T = Gr/T = ratio of receiver gain to system thermal noise temperature.

The parameters EIRP, G/T, and L on the rightof (C-3) are each discussedbelow.

TDRSS normal-power EIRPs for the MA, and SSA channels are shown in Table C-1
[Ref. 3]. A ground transmitter has effectively unlimited EIRP. The spacecraft EIRP is the
product Pt GL The TDRS and near-Earthspacecrafttransponderseach provide an antenna

power of Pt = 5 Watts. The spacecrafttransmittergain Gt willdepend on the choice of

antenna; a variety will be considered for Space Network communication. For

communication to a ground stationitisusuallyadequate touse an omnidirectionalantenna
with Gt = I =0dB.

EffectiveG/T ratiosfor the SMA and SSA channels are shown in Table C-I [Ref. 3].

The gains Gt or Car of antennas used on an EES or the ground may be computed from

G ---4 pi {(A e)/(lambda)2} (C-4)

where,

A = antcnna area

• = radiationefficiency,typically54% fordishes,70% forplanararrays,and

lambda = wavelength.

The MA center frequency is 2288 MHz, for which the wavelength is 0.13 meter. This may

also be taken as typical for the SSA channel range of 2200 to 2300 MHz and for S-Band
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groundstation communication. The ground antennas considered are 6, and 9 meters in
diameter. For uncooled receiver systems, T may be assumed to be approximately 300
degK. The G/T ratios for these ground antennas are shown in Table C-2.

For ground communication L may be computed from

L = Lp M (lambda/4 pi r) 2, (C-5)

w he re,

Lp = polarization, pointing, other losses, typically -3 dB,

M = margin, typically -3 dB, and
r = transmitter-receiver range, given by Appendix B.

Table C- 1. Space Network Communication Parameters

TDRSS channel
Parameter SMA SSA

EIRP 34 dBW 43.6 dBW

G/T -1.9 dB/de_K 9.2 dB/degK

Table C-2. Ground Station Communication Parameters

Parameter

EIRP
Gfr

Ground antenna diameter
6 meter 9 meter

urdimited [ unlimited
16.2 dB/degK [ 19.7 dB/degK
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APPENDIX - D ACHIEVABLE DATA RATE

To satisfy the strawman experiment requirements, different data rates are needed to transmit

science data to the ground data processing system via ground stations or TDRSS. Factors in

determining what data rate is needed for what scawman instrument are:

a) average instrument data rate,

b) number of contacts per day between the spacecraft and the receiving station and,

c) the average useable contact time.

Equation D- 1 produces a f'trst approximation for the transmission data rate required to satisfy the

individual strawman experiments and was used to plot the strawman experiments on the graphs in

figures 7 - 1 through 7 - 4.

TDR = ((1000*AIDR)*86400 sec./day) / (CPD) / ((AVT - 2.5 rain.)*60) (D - 1)

where, TDR = transmission data rate,

AIDR = average instrument data rate in kbps,

CPD = contacts per day and,

AVT = average viewing time.in minutes.

To produce this first approximation the following assumptions were made. First, it was assumed

the average data rate listed in Table 3.3-2 was the average data rate for that experiment for a day,

(AIDR is multiplied by 1000 to get it in terms of bit per second). Second, it was assumed that the

tape recorder was able to play back data at a rate different than at which it was recorded. Third, the

CPD were taken as the average number of contacts per day as determined from the tables in

Appendix A. Depending on the average view time, when an individual view period was three to

five minutes shorter than the average, it was not included in the average. Thus, view periods that

were to short to be useful for zetuming science data were not averaged in. These periods could still

be used for commanding. Fourth, two and a half minutes was subtracted from the average view

time (and multipfied by 60 to get it in terms of seconds) before it was divided into the equation.

Fifth, it is assumed that when TDRSS is used there will be four regularly scheduled contacts per

day about six hours apart and with each contact lasting about 20 minutes. Sixth, it was assumed

that the ground station would be dedicated to the EES mission during the entire view period of a

spacecraft pass. This may or may not be true for spacecraft with long orbital periods.



The TDRs were then plotted against maximum slant range, as determined in Appendix B, in

Figures 7 - 1 through 7 - 4 for a trade off study between TDRSS and ground stations and to check

the performance of the designs presented by the EES Study Team [Ref. 2].


